concoutput_inversion_nest.f90 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine concoutput_inversion_nest(itime,outnum)
  !                        i     i
  !*****************************************************************************
  !                                                                            *
  !     Output of the concentration grid and the receptor concentrations.      *
  !                                                                            *
  !     Author: A. Stohl                                                       *
  !                                                                            *
  !     24 May 1995                                                            *
  !                                                                            *
  !     13 April 1999, Major update: if output size is smaller, dump output    *
  !                    in sparse matrix format; additional output of           *
  !                    uncertainty                                             *
  !                                                                            *
  !     05 April 2000, Major update: output of age classes; output for backward*
  !                    runs is time spent in grid cell times total mass of     *
  !                    species.                                                *
  !                                                                            *
  !     17 February 2002, Appropriate dimensions for backward and forward runs *
  !                       are now specified in file par_mod                    *
  !                                                                            *
  !     June 2006, write grid in sparse matrix with a single write command     *
  !                in order to save disk space                                 *
  !                                                                            *
  !     2008 new sparse matrix format                                          *
  !
  !     January 2017,  Separate files by release but include all timesteps     *
  !                                                                            *
  !*****************************************************************************
  !                                                                            *
  ! Variables:                                                                 *
  ! outnum          number of samples                                          *
  ! ncells          number of cells with non-zero concentrations               *
  ! sparse          .true. if in sparse matrix format, else .false.            *
  ! tot_mu          1 for forward, initial mass mixing ration for backw. runs  *
  !                                                                            *
  !*****************************************************************************

  use unc_mod
  use point_mod
  use outg_mod
  use par_mod
  use com_mod
  use mean_mod

  implicit none

  real(kind=dp) :: jul
  integer :: itime,i,ix,jy,kz,ks,kp,l,iix,jjy,kzz,nage,jjjjmmdd,ihmmss
  integer :: sp_count_i,sp_count_r
  real :: sp_fact
  real :: outnum,densityoutrecept(maxreceptor),xl,yl
! RLT
  real :: densitydryrecept(maxreceptor)
  real :: factor_dryrecept(maxreceptor)

  !real densityoutgrid(0:numxgrid-1,0:numygrid-1,numzgrid),
  !    +grid(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,maxpointspec_act,
  !    +    maxageclass)
  !real wetgrid(0:numxgrid-1,0:numygrid-1,maxspec,maxpointspec_act,
  !    +       maxageclass)
  !real drygrid(0:numxgrid-1,0:numygrid-1,maxspec,
  !    +       maxpointspec_act,maxageclass)
  !real gridsigma(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,
  !    +       maxpointspec_act,maxageclass),
  !    +     drygridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
  !    +     maxpointspec_act,maxageclass),
  !    +     wetgridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
  !    +     maxpointspec_act,maxageclass)
  !real factor(0:numxgrid-1,0:numygrid-1,numzgrid)
  !real sparse_dump_r(numxgrid*numygrid*numzgrid)
  !integer sparse_dump_i(numxgrid*numygrid*numzgrid)

  !real sparse_dump_u(numxgrid*numygrid*numzgrid)
  real(dep_prec) :: auxgrid(nclassunc)
  real :: halfheight,dz,dz1,dz2,tot_mu(maxspec,maxpointspec_act)
  real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled
  real,parameter :: weightair=28.97
  logical :: sp_zer
  logical,save :: lnstart=.true.
  logical,save,allocatable,dimension(:) :: lnstartrel
  character :: adate*8,atime*6
  character(len=3) :: anspec
  logical :: lexist
  character :: areldate*8,areltime*6

  if(lnstart) then
    allocate(lnstartrel(maxpointspec_act))
    lnstartrel(:)=.true.
  endif
  print*, 'lnstartrel = ',lnstartrel

  ! Determine current calendar date, needed for the file name
  !**********************************************************

  jul=bdate+real(itime,kind=dp)/86400._dp
  call caldate(jul,jjjjmmdd,ihmmss)
  write(adate,'(i8.8)') jjjjmmdd
  write(atime,'(i6.6)') ihmmss

  print*, 'outnum:',outnum
  print*, 'datetime:',adate//atime

  ! For forward simulations, output fields have dimension MAXSPEC,
  ! for backward simulations, output fields have dimension MAXPOINT.
  ! Thus, make loops either about nspec, or about numpoint
  !*****************************************************************


    if (ldirect.eq.1) then
       do ks=1,nspec
         do kp=1,maxpointspec_act
           tot_mu(ks,kp)=1
         end do
       end do
   else
      do ks=1,nspec
             do kp=1,maxpointspec_act
               tot_mu(ks,kp)=xmass(kp,ks)
             end do
      end do
    endif


  !*******************************************************************
  ! Compute air density: sufficiently accurate to take it
  ! from coarse grid at some time
  ! Determine center altitude of output layer, and interpolate density
  ! data to that altitude
  !*******************************************************************

  do kz=1,numzgrid
    if (kz.eq.1) then
      halfheight=outheight(1)/2.
    else
      halfheight=(outheight(kz)+outheight(kz-1))/2.
    endif
    do kzz=2,nz
      if ((height(kzz-1).lt.halfheight).and. &
           (height(kzz).gt.halfheight)) goto 46
    end do
46   kzz=max(min(kzz,nz),2)
    dz1=halfheight-height(kzz-1)
    dz2=height(kzz)-halfheight
    dz=dz1+dz2
    do jy=0,numygridn-1
      do ix=0,numxgridn-1
        xl=outlon0n+real(ix)*dxoutn
        yl=outlat0n+real(jy)*dyoutn
        xl=(xl-xlon0)/dx
        yl=(yl-ylat0)/dy
        iix=max(min(nint(xl),nxmin1),0)
        jjy=max(min(nint(yl),nymin1),0)
        densityoutgrid(ix,jy,kz)=(rho(iix,jjy,kzz,2)*dz1+ &
             rho(iix,jjy,kzz-1,2)*dz2)/dz
! RLT
        densitydrygrid(ix,jy,kz)=(rho_dry(iix,jjy,kzz,2)*dz1+ &
             rho_dry(iix,jjy,kzz-1,2)*dz2)/dz
      end do
    end do
  end do

  do i=1,numreceptor
    xl=xreceptor(i)
    yl=yreceptor(i)
    iix=max(min(nint(xl),nxmin1),0)
    jjy=max(min(nint(yl),nymin1),0)
    densityoutrecept(i)=rho(iix,jjy,1,2)
! RLT
    densitydryrecept(i)=rho_dry(iix,jjy,1,2)
  end do

! RLT
! conversion factor for output relative to dry air
  factor_drygrid=densityoutgrid/densitydrygrid
  factor_dryrecept=densityoutrecept/densitydryrecept

  ! Output is different for forward and backward simulations
    do kz=1,numzgrid
      do jy=0,numygridn-1
        do ix=0,numxgridn-1
          if (ldirect.eq.1) then
            factor3d(ix,jy,kz)=1.e12/volumen(ix,jy,kz)/outnum
          else
            factor3d(ix,jy,kz)=real(abs(loutaver))/outnum
          endif
        end do
      end do
    end do

  !*********************************************************************
  ! Determine the standard deviation of the mean concentration or mixing
  ! ratio (uncertainty of the output) and the dry and wet deposition
  !*********************************************************************

  do ks=1,nspec

  write(anspec,'(i3.3)') ks

    do kp=1,maxpointspec_act

      print*, 'itime = ',itime
      print*, 'lage(1) = ',lage(1)
      print*, 'ireleasestart(kp) = ',ireleasestart(kp)
      print*, 'ireleaseend(kp) = ',ireleaseend(kp)

      ! check itime is within release and backward trajectory length
      if (nageclass.eq.1) then
        if ((itime.gt.ireleaseend(kp)).or.(itime.lt.(ireleasestart(kp)-lage(1)))) then
          go to 10
        endif
      endif

      ! calculate date of release
      jul=bdate+real(ireleasestart(kp),kind=dp)/86400._dp    ! this is the current day
      call caldate(jul,jjjjmmdd,ihmmss)
      write(areldate,'(i8.8)') jjjjmmdd
      write(areltime,'(i6.6)') ihmmss
      print*, areldate//areltime

      ! calculate date of field
      jul=bdate+real(itime,kind=dp)/86400._dp
      call caldate(jul,jjjjmmdd,ihmmss)
      write(adate,'(i8.8)') jjjjmmdd
      write(atime,'(i6.6)') ihmmss
      print*, adate//atime

      if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then
        if (ldirect.eq.1) then
          ! concentrations
          inquire(file=path(2)(1:length(2))//'grid_conc_nest_'//areldate// &
                  areltime//'_'//anspec,exist=lexist)
          if(lexist.and..not.lnstartrel(kp)) then
            ! open and append to existing file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='old',action='write',access='append')
          else
            ! open new file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='replace',action='write')
          endif
        else
          ! residence times
          inquire(file=path(2)(1:length(2))//'grid_time_nest_'//areldate// &
                  areltime//'_'//anspec,exist=lexist)
          if(lexist.and..not.lnstartrel(kp)) then
            ! open and append to existing file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='old',action='write',access='append')
          else
            ! open new file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='replace',action='write')
          endif
        endif
        write(unitoutgrid) jjjjmmdd
        write(unitoutgrid) ihmmss
      endif

      if ((iout.eq.2).or.(iout.eq.3)) then
        ! mixing ratio
        inquire(file=path(2)(1:length(2))//'grid_pptv_nest_'//areldate// &
                areltime//'_'//anspec,exist=lexist)
        if(lexist.and..not.lnstartrel(kp)) then
          ! open and append to existing file
          open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_nest_'//areldate// &
               areltime//'_'//anspec,form='unformatted',status='old',action='write',access='append')
        else
          ! open new file
          open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_nest_'//areldate// &
               areltime//'_'//anspec,form='unformatted',status='replace',action='write')
        endif
        write(unitoutgridppt) jjjjmmdd
        write(unitoutgridppt) ihmmss
      endif

      lnstartrel(kp)=.false.

      do nage=1,nageclass

        do jy=0,numygridn-1
          do ix=0,numxgridn-1

!  ! WET DEPOSITION
!            if ((WETDEP).and.(ldirect.gt.0)) then
!              do l=1,nclassunc
!                auxgrid(l)=wetgriduncn(ix,jy,ks,kp,l,nage)
!              end do
!              call mean(auxgrid,wetgrid(ix,jy), &
!                   wetgridsigma(ix,jy),nclassunc)
!  ! Multiply by number of classes to get total concentration
!              wetgrid(ix,jy)=wetgrid(ix,jy) &
!                   *nclassunc
!  ! Calculate standard deviation of the mean
!              wetgridsigma(ix,jy)= &
!                   wetgridsigma(ix,jy)* &
!                   sqrt(real(nclassunc))
!            endif

!  ! DRY DEPOSITION
!            if ((DRYDEP).and.(ldirect.gt.0)) then
!              do l=1,nclassunc
!                auxgrid(l)=drygriduncn(ix,jy,ks,kp,l,nage)
!              end do
!              call mean(auxgrid,drygrid(ix,jy), &
!                   drygridsigma(ix,jy),nclassunc)
!  ! Multiply by number of classes to get total concentration
!              drygrid(ix,jy)=drygrid(ix,jy)* &
!                   nclassunc
!  ! Calculate standard deviation of the mean
!              drygridsigma(ix,jy)= &
!                   drygridsigma(ix,jy)* &
!                   sqrt(real(nclassunc))
!            endif

  ! CONCENTRATION OR MIXING RATIO
            do kz=1,numzgrid
              do l=1,nclassunc
                auxgrid(l)=griduncn(ix,jy,kz,ks,kp,l,nage)
              end do
              call mean(auxgrid,grid(ix,jy,kz), &
                     gridsigma(ix,jy,kz),nclassunc)
  ! Multiply by number of classes to get total concentration
              grid(ix,jy,kz)= &
                   grid(ix,jy,kz)*nclassunc
  ! Calculate standard deviation of the mean
              gridsigma(ix,jy,kz)= &
                   gridsigma(ix,jy,kz)* &
                   sqrt(real(nclassunc))
            end do
          end do
        end do


  !*******************************************************************
  ! Generate output: may be in concentration (ng/m3) or in mixing
  ! ratio (ppt) or both
  ! Output the position and the values alternated multiplied by
  ! 1 or -1, first line is number of values, number of positions
  ! For backward simulations, the unit is seconds, stored in grid_time
  !*******************************************************************

  ! Concentration output
  !*********************

        if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then

!  ! Wet deposition
!          sp_count_i=0
!          sp_count_r=0
!          sp_fact=-1.
!          sp_zer=.true.
!          if ((ldirect.eq.1).and.(WETDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!  ! concentration greater zero
!              if (wetgrid(ix,jy).gt.smallnum) then
!                 if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)=ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1.)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact*1.e12*wetgrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*wetgridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!         end do
!         else
!            sp_count_i=0
!            sp_count_r=0
!         endif
!         write(unitoutgrid) sp_count_i
!         write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)

!  ! Dry deposition
!         sp_count_i=0
!         sp_count_r=0
!         sp_fact=-1.
!         sp_zer=.true.
!         if ((ldirect.eq.1).and.(DRYDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!              if (drygrid(ix,jy).gt.smallnum) then
!                 if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)=ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1.)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact* &
!                      1.e12*drygrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*drygridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!          end do
!         else
!            sp_count_i=0
!            sp_count_r=0
!         endif
!         write(unitoutgrid) sp_count_i
!         write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
!

  ! Concentrations

  ! surf_only write only 1st layer 

         sp_count_i=0
         sp_count_r=0
         sp_fact=-1.
         sp_zer=.true.
          do kz=1,1
            do jy=0,numygridn-1
              do ix=0,numxgridn-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgridn+kz*numxgridn*numygridn
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
                   endif
                   sp_count_r=sp_count_r+1
                   sparse_dump_r(sp_count_r)= &
                        sp_fact* &
                        grid(ix,jy,kz)* &
                        factor3d(ix,jy,kz)/tot_mu(ks,kp)
  !                 if ((factor(ix,jy,kz)/tot_mu(ks,kp)).eq.0)
  !    +              write (*,*) factor(ix,jy,kz),tot_mu(ks,kp),ks,kp
                   sparse_dump_u(sp_count_r)= &
                        gridsigma(ix,jy,kz)* &
                        factor3d(ix,jy,kz)/tot_mu(ks,kp)
              else ! concentration is zero
                  sp_zer=.true.
              endif
              end do
            end do
          end do
         write(unitoutgrid) sp_count_i
         write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
         write(unitoutgrid) sp_count_r
         write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)

      endif !  concentration output

  ! Mixing ratio output
  !********************

      if ((iout.eq.2).or.(iout.eq.3)) then      ! mixing ratio

!  ! Wet deposition
!         sp_count_i=0
!         sp_count_r=0
!         sp_fact=-1.
!         sp_zer=.true.
!         if ((ldirect.eq.1).and.(WETDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!                if (wetgrid(ix,jy).gt.smallnum) then
!                  if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)= &
!                         ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1.)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact* &
!                      1.e12*wetgrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*wetgridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!          end do
!         else
!           sp_count_i=0
!           sp_count_r=0
!         endif
!         write(unitoutgridppt) sp_count_i
!         write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
!

!  ! Dry deposition
!         sp_count_i=0
!         sp_count_r=0
!         sp_fact=-1.
!         sp_zer=.true.
!         if ((ldirect.eq.1).and.(DRYDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!                if (drygrid(ix,jy).gt.smallnum) then
!                  if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)= &
!                         ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact* &
!                      1.e12*drygrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*drygridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!          end do
!         else
!           sp_count_i=0
!           sp_count_r=0
!         endif
!         write(unitoutgridppt) sp_count_i
!         write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
!

  ! Mixing ratios

    ! surf_only write only 1st layer 

         sp_count_i=0
         sp_count_r=0
         sp_fact=-1.
         sp_zer=.true.
          do kz=1,1
            do jy=0,numygridn-1
              do ix=0,numxgridn-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgridn+kz*numxgridn*numygridn
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
                 endif
                 sp_count_r=sp_count_r+1
                 sparse_dump_r(sp_count_r)= &
                      sp_fact* &
                      1.e12*grid(ix,jy,kz) &
                      /volumen(ix,jy,kz)/outnum* &
                      weightair/weightmolar(ks)/densityoutgrid(ix,jy,kz)
                 sparse_dump_u(sp_count_r)= &
                      1.e12*gridsigma(ix,jy,kz)/volumen(ix,jy,kz)/ &
                      outnum*weightair/weightmolar(ks)/ &
                      densityoutgrid(ix,jy,kz)
              else ! concentration is zero
                  sp_zer=.true.
              endif
              end do
            end do
          end do
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
!          write(unitoutgridppt) sp_count_r
!          write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)

        endif ! output for ppt
 
      end do ! nageclass

      close(unitoutgridppt)
      close(unitoutgrid)

      ! itime is outside range
10    continue

    end do ! maxpointspec_act

  end do ! nspec


! RLT Aug 2017
! Write out conversion factor for dry air
  inquire(file=path(2)(1:length(2))//'factor_drygrid_nest',exist=lexist)
  if (lexist.and..not.lnstart) then
    ! open and append
    open(unitoutfactor,file=path(2)(1:length(2))//'factor_drygrid_nest',form='unformatted',&
            status='old',action='write',access='append')
  else
    ! create new
    open(unitoutfactor,file=path(2)(1:length(2))//'factor_drygrid_nest',form='unformatted',&
            status='replace',action='write')
  endif
  sp_count_i=0
  sp_count_r=0
  sp_fact=-1.
  sp_zer=.true.
  do kz=1,1
    do jy=0,numygridn-1
      do ix=0,numxgridn-1
        if (factor_drygrid(ix,jy,kz).gt.(1.+smallnum).or.factor_drygrid(ix,jy,kz).lt.(1.-smallnum)) then
          if (sp_zer.eqv..true.) then ! first value not equal to one
            sp_count_i=sp_count_i+1
            sparse_dump_i(sp_count_i)= &
                  ix+jy*numxgridn+kz*numxgridn*numygridn
            sp_zer=.false.
            sp_fact=sp_fact*(-1.)
          endif
          sp_count_r=sp_count_r+1
          sparse_dump_r(sp_count_r)= &
               sp_fact*factor_drygrid(ix,jy,kz)
        else ! factor is one
          sp_zer=.true.
        endif
      end do
    end do
  end do
  write(unitoutfactor) sp_count_i
  write(unitoutfactor) (sparse_dump_i(i),i=1,sp_count_i)
  write(unitoutfactor) sp_count_r
  write(unitoutfactor) (sparse_dump_r(i),i=1,sp_count_r)
  close(unitoutfactor)

  ! reset lnstart
  if (lnstart) then
    lnstart=.false.
  endif

  ! Reinitialization of grid
  !*************************

  do ks=1,nspec
  do kp=1,maxpointspec_act
    do i=1,numreceptor
      creceptor(i,ks)=0.
    end do
    do jy=0,numygridn-1
      do ix=0,numxgridn-1
        do l=1,nclassunc
          do nage=1,nageclass
            do kz=1,numzgrid
              griduncn(ix,jy,kz,ks,kp,l,nage)=0.
            end do
          end do
        end do
      end do
    end do
  end do
  end do


end subroutine concoutput_inversion_nest