concoutput_surf.f90 25.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine concoutput_surf(itime,outnum,gridtotalunc,wetgridtotalunc, &
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
     drygridtotalunc)
!                        i     i          o             o
!       o
!*****************************************************************************
!                                                                            *
!     Output of the concentration grid and the receptor concentrations.      *
!                                                                            *
!     Author: A. Stohl                                                       *
!                                                                            *
!     24 May 1995                                                            *
!                                                                            *
!     13 April 1999, Major update: if output size is smaller, dump output    *
!                    in sparse matrix format; additional output of           *
!                    uncertainty                                             *
!                                                                            *
!     05 April 2000, Major update: output of age classes; output for backward*
!                    runs is time spent in grid cell times total mass of     *
!                    species.                                                *
!                                                                            *
!     17 February 2002, Appropriate dimensions for backward and forward runs *
!                       are now specified in file par_mod                    *
!                                                                            *
!     June 2006, write grid in sparse matrix with a single write command     *
!                in order to save disk space                                 *
!                                                                            *
!     2008 new sparse matrix format                                          *
!                                                                            *
!*****************************************************************************
!                                                                            *
! Variables:                                                                 *
! outnum          number of samples                                          *
! ncells          number of cells with non-zero concentrations               *
! sparse          .true. if in sparse matrix format, else .false.            *
! tot_mu          1 for forward, initial mass mixing ration for backw. runs  *
!                                                                            *
!*****************************************************************************
59
60
61
62
63
64

  use unc_mod
  use point_mod
  use outg_mod
  use par_mod
  use com_mod
65
  use mean_mod
66
67
68
69
70
71
72
73

  implicit none

  real(kind=dp) :: jul
  integer :: itime,i,ix,jy,kz,ks,kp,l,iix,jjy,kzz,nage,jjjjmmdd,ihmmss
  integer :: sp_count_i,sp_count_r
  real :: sp_fact
  real :: outnum,densityoutrecept(maxreceptor),xl,yl
74
75
76
! RLT
  real :: densitydryrecept(maxreceptor)
  real :: factor_dryrecept(maxreceptor)
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
!real densityoutgrid(0:numxgrid-1,0:numygrid-1,numzgrid),
!    +grid(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,maxpointspec_act,
!    +    maxageclass)
!real wetgrid(0:numxgrid-1,0:numygrid-1,maxspec,maxpointspec_act,
!    +       maxageclass)
!real drygrid(0:numxgrid-1,0:numygrid-1,maxspec,
!    +       maxpointspec_act,maxageclass)
!real gridsigma(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,
!    +       maxpointspec_act,maxageclass),
!    +     drygridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
!    +     maxpointspec_act,maxageclass),
!    +     wetgridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
!    +     maxpointspec_act,maxageclass)
!real factor(0:numxgrid-1,0:numygrid-1,numzgrid)
!real sparse_dump_r(numxgrid*numygrid*numzgrid)
!integer sparse_dump_i(numxgrid*numygrid*numzgrid)

!real sparse_dump_u(numxgrid*numygrid*numzgrid)
96
97
98
99
  real(dep_prec) :: auxgrid(nclassunc)
  real(sp) :: gridtotal,gridsigmatotal,gridtotalunc
  real(dep_prec) :: wetgridtotal,wetgridsigmatotal,wetgridtotalunc
  real(dep_prec) :: drygridtotal,drygridsigmatotal,drygridtotalunc
100
101
102
103
104
105
  real :: halfheight,dz,dz1,dz2,tot_mu(maxspec,maxpointspec_act)
  real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled
  real,parameter :: weightair=28.97
  logical :: sp_zer
  character :: adate*8,atime*6
  character(len=3) :: anspec
106
  logical :: lexist
107
108
109


  if (verbosity.eq.1) then
110
111
112
    print*,'inside concoutput_surf '
    CALL SYSTEM_CLOCK(count_clock)
    WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
113
114
  endif

115
116
! Determine current calendar date, needed for the file name
!**********************************************************
117
118
119
120
121

  jul=bdate+real(itime,kind=dp)/86400._dp
  call caldate(jul,jjjjmmdd,ihmmss)
  write(adate,'(i8.8)') jjjjmmdd
  write(atime,'(i6.6)') ihmmss
122
!write(unitdates,'(a)') adate//atime
123

124
125
126
  open(unitdates,file=path(2)(1:length(2))//'dates', ACCESS='APPEND')
  write(unitdates,'(a)') adate//atime
  close(unitdates)
127

128
129
130
131
! For forward simulations, output fields have dimension MAXSPEC,
! for backward simulations, output fields have dimension MAXPOINT.
! Thus, make loops either about nspec, or about numpoint
!*****************************************************************
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149


  if (ldirect.eq.1) then
    do ks=1,nspec
      do kp=1,maxpointspec_act
        tot_mu(ks,kp)=1
      end do
    end do
  else
    do ks=1,nspec
      do kp=1,maxpointspec_act
        tot_mu(ks,kp)=xmass(kp,ks)
      end do
    end do
  endif


  if (verbosity.eq.1) then
150
151
152
    print*,'concoutput_surf 2'
    CALL SYSTEM_CLOCK(count_clock)
    WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
153
154
  endif

155
156
157
158
159
160
!*******************************************************************
! Compute air density: sufficiently accurate to take it
! from coarse grid at some time
! Determine center altitude of output layer, and interpolate density
! data to that altitude
!*******************************************************************
161
162
163
164
165
166
167
168
169
170
171

  do kz=1,numzgrid
    if (kz.eq.1) then
      halfheight=outheight(1)/2.
    else
      halfheight=(outheight(kz)+outheight(kz-1))/2.
    endif
    do kzz=2,nz
      if ((height(kzz-1).lt.halfheight).and. &
           (height(kzz).gt.halfheight)) goto 46
    end do
172
46  kzz=max(min(kzz,nz),2)
173
174
175
176
177
178
179
180
    dz1=halfheight-height(kzz-1)
    dz2=height(kzz)-halfheight
    dz=dz1+dz2
    do jy=0,numygrid-1
      do ix=0,numxgrid-1
        xl=outlon0+real(ix)*dxout
        yl=outlat0+real(jy)*dyout
        xl=(xl-xlon0)/dx
181
        yl=(yl-ylat0)/dy
182
183
184
185
        iix=max(min(nint(xl),nxmin1),0)
        jjy=max(min(nint(yl),nymin1),0)
        densityoutgrid(ix,jy,kz)=(rho(iix,jjy,kzz,2)*dz1+ &
             rho(iix,jjy,kzz-1,2)*dz2)/dz
186
187
188
! RLT
        densitydrygrid(ix,jy,kz)=(rho_dry(iix,jjy,kzz,2)*dz1+ &
             rho_dry(iix,jjy,kzz-1,2)*dz2)/dz
189
190
191
192
      end do
    end do
  end do

193
194
195
196
197
198
  do i=1,numreceptor
    xl=xreceptor(i)
    yl=yreceptor(i)
    iix=max(min(nint(xl),nxmin1),0)
    jjy=max(min(nint(yl),nymin1),0)
    densityoutrecept(i)=rho(iix,jjy,1,2)
199
200
! RLT
    densitydryrecept(i)=rho_dry(iix,jjy,1,2)
201
  end do
202

203
204
205
206
! RLT
! conversion factor for output relative to dry air
  factor_drygrid=densityoutgrid/densitydrygrid
  factor_dryrecept=densityoutrecept/densitydryrecept
207

208
209
210
211
212
213
214
215
216
! Output is different for forward and backward simulations
  do kz=1,numzgrid
    do jy=0,numygrid-1
      do ix=0,numxgrid-1
        if (ldirect.eq.1) then
          factor3d(ix,jy,kz)=1.e12/volume(ix,jy,kz)/outnum
        else
          factor3d(ix,jy,kz)=real(abs(loutaver))/outnum
        endif
217
218
      end do
    end do
219
  end do
220

221
222
223
224
!*********************************************************************
! Determine the standard deviation of the mean concentration or mixing
! ratio (uncertainty of the output) and the dry and wet deposition
!*********************************************************************
225
226

  if (verbosity.eq.1) then
227
228
229
    print*,'concoutput_surf 3 (sd)'
    CALL SYSTEM_CLOCK(count_clock)
    WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
230
231
232
233
234
235
236
237
238
239
240
241
242
  endif
  gridtotal=0.
  gridsigmatotal=0.
  gridtotalunc=0.
  wetgridtotal=0.
  wetgridsigmatotal=0.
  wetgridtotalunc=0.
  drygridtotal=0.
  drygridsigmatotal=0.
  drygridtotalunc=0.

  do ks=1,nspec

243
244
245
246
247
248
249
250
251
252
    write(anspec,'(i3.3)') ks
    if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then
      if (ldirect.eq.1) then
        open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_'//adate// &
             atime//'_'//anspec,form='unformatted')
      else
        open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_'//adate// &
             atime//'_'//anspec,form='unformatted')
      endif
      write(unitoutgrid) itime
253
254
    endif

255
256
257
    if ((iout.eq.2).or.(iout.eq.3)) then      ! mixing ratio
      open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_'//adate// &
           atime//'_'//anspec,form='unformatted')
258

259
260
      write(unitoutgridppt) itime
    endif
261

262
263
    do kp=1,maxpointspec_act
      do nage=1,nageclass
264

265
266
        do jy=0,numygrid-1
          do ix=0,numxgrid-1
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
! WET DEPOSITION
            if ((WETDEP).and.(ldirect.gt.0)) then
              do l=1,nclassunc
                auxgrid(l)=wetgridunc(ix,jy,ks,kp,l,nage)
              end do
              call mean(auxgrid,wetgrid(ix,jy), &
                   wetgridsigma(ix,jy),nclassunc)
! Multiply by number of classes to get total concentration
              wetgrid(ix,jy)=wetgrid(ix,jy) &
                   *nclassunc
              wetgridtotal=wetgridtotal+wetgrid(ix,jy)
! Calculate standard deviation of the mean
              wetgridsigma(ix,jy)= &
                   wetgridsigma(ix,jy)* &
                   sqrt(real(nclassunc))
              wetgridsigmatotal=wetgridsigmatotal+ &
                   wetgridsigma(ix,jy)
            endif

! DRY DEPOSITION
            if ((DRYDEP).and.(ldirect.gt.0)) then
              do l=1,nclassunc
                auxgrid(l)=drygridunc(ix,jy,ks,kp,l,nage)
              end do
              call mean(auxgrid,drygrid(ix,jy), &
                   drygridsigma(ix,jy),nclassunc)
! Multiply by number of classes to get total concentration
              drygrid(ix,jy)=drygrid(ix,jy)* &
                   nclassunc
              drygridtotal=drygridtotal+drygrid(ix,jy)
! Calculate standard deviation of the mean
              drygridsigma(ix,jy)= &
                   drygridsigma(ix,jy)* &
                   sqrt(real(nclassunc))
125           drygridsigmatotal=drygridsigmatotal+ &
                   drygridsigma(ix,jy)
            endif

! CONCENTRATION OR MIXING RATIO
            do kz=1,numzgrid
              do l=1,nclassunc
                auxgrid(l)=gridunc(ix,jy,kz,ks,kp,l,nage)
              end do
              call mean(auxgrid,grid(ix,jy,kz), &
                   gridsigma(ix,jy,kz),nclassunc)
! Multiply by number of classes to get total concentration
              grid(ix,jy,kz)= &
                   grid(ix,jy,kz)*nclassunc
              gridtotal=gridtotal+grid(ix,jy,kz)
! Calculate standard deviation of the mean
              gridsigma(ix,jy,kz)= &
                   gridsigma(ix,jy,kz)* &
                   sqrt(real(nclassunc))
              gridsigmatotal=gridsigmatotal+ &
                   gridsigma(ix,jy,kz)
323
            end do
324
          end do
325
326
327
        end do


328
329
330
331
332
333
334
!*******************************************************************
! Generate output: may be in concentration (ng/m3) or in mixing
! ratio (ppt) or both
! Output the position and the values alternated multiplied by
! 1 or -1, first line is number of values, number of positions
! For backward simulations, the unit is seconds, stored in grid_time
!*******************************************************************
335

336
337
338
339
340
        if (verbosity.eq.1) then
          print*,'concoutput_surf 4 (output)'
          CALL SYSTEM_CLOCK(count_clock)
          WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
        endif
341

342
343
! Concentration output
!*********************
344

345
        if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then
346

347
348
349
350
351
          if (verbosity.eq.1) then
            print*,'concoutput_surf (Wet deposition)'
            CALL SYSTEM_CLOCK(count_clock)
            WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
          endif
352

353
354
355
356
357
358
359
360
361
362
363
! Wet deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(WETDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
! concentraion greater zero
                if (wetgrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
364
365
366
367
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)=ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
368
369
370
371
372
373
374
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact*1.e12*wetgrid(ix,jy)/area(ix,jy)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*wetgridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
375
                  sp_zer=.true.
376
377
                endif
              end do
378
            end do
379
          else
380
381
            sp_count_i=0
            sp_count_r=0
382
383
384
385
386
          endif
          write(unitoutgrid) sp_count_i
          write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgrid) sp_count_r
          write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
387
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
          if (verbosity.eq.1) then
            print*,'concoutput_surf (Dry deposition)'
            CALL SYSTEM_CLOCK(count_clock)
            WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
          endif
! Dry deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(DRYDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
                if (drygrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
404
405
406
407
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)=ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
408
409
410
411
412
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*drygrid(ix,jy)/area(ix,jy)
413
                  sparse_dump_u(sp_count_r)= &
414
415
                       1.e12*drygridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
416
                  sp_zer=.true.
417
418
                endif
              end do
419
            end do
420
          else
421
422
            sp_count_i=0
            sp_count_r=0
423
424
425
426
427
          endif
          write(unitoutgrid) sp_count_i
          write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgrid) sp_count_r
          write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
428
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
429

430
431
432
433
434
          if (verbosity.eq.1) then
            print*,'concoutput_surf (Concentrations)'
            CALL SYSTEM_CLOCK(count_clock)
            WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
          endif
435

436
! Concentrations
437

438
! surf_only write only 1st layer 
439

440
441
442
443
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
444
445
446
447
448
449
450
451
452
453
          do kz=1,1
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid+kz*numxgrid*numygrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
454
                  endif
455
456
457
458
459
460
461
462
463
464
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       grid(ix,jy,kz)* &
                       factor3d(ix,jy,kz)/tot_mu(ks,kp)
!                 if ((factor(ix,jy,kz)/tot_mu(ks,kp)).eq.0)
!    +              write (*,*) factor(ix,jy,kz),tot_mu(ks,kp),ks,kp
                  sparse_dump_u(sp_count_r)= &
                       gridsigma(ix,jy,kz)* &
                       factor3d(ix,jy,kz)/tot_mu(ks,kp)
465
                else ! concentration is zero
466
                  sp_zer=.true.
467
                endif
468
469
470
471
472
473
474
              end do
            end do
          end do
          write(unitoutgrid) sp_count_i
          write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgrid) sp_count_r
          write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
475
!          write(unitoutgrid) sp_count_r
476
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
477

478
        endif !  concentration output
479

480
481
! Mixing ratio output
!********************
482

483
        if ((iout.eq.2).or.(iout.eq.3)) then      ! mixing ratio
484

485
486
487
488
489
490
491
492
! Wet deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(WETDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
493
494
495
496
497
498
499
                if (wetgrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
500
501
502
503
504
505
506
507
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*wetgrid(ix,jy)/area(ix,jy)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*wetgridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
508
                  sp_zer=.true.
509
510
                endif
              end do
511
            end do
512
513
514
515
516
517
518
519
          else
            sp_count_i=0
            sp_count_r=0
          endif
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
520
!          write(unitoutgridppt) sp_count_r
521
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
522
523


524
525
526
527
528
529
530
531
! Dry deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(DRYDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
532
533
534
535
536
537
538
                if (drygrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1)
539
540
541
542
543
544
545
546
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*drygrid(ix,jy)/area(ix,jy)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*drygridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
547
                  sp_zer=.true.
548
549
                endif
              end do
550
            end do
551
552
553
554
555
556
557
558
          else
            sp_count_i=0
            sp_count_r=0
          endif
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
559
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
560
561


562
! Mixing ratios
563

564
! surf_only write only 1st layer 
565

566
567
568
569
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
570
571
572
573
574
575
576
577
578
579
          do kz=1,1
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid+kz*numxgrid*numygrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
580
581
582
583
584
585
586
587
588
589
590
591
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*grid(ix,jy,kz) &
                       /volume(ix,jy,kz)/outnum* &
                       weightair/weightmolar(ks)/densityoutgrid(ix,jy,kz)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*gridsigma(ix,jy,kz)/volume(ix,jy,kz)/ &
                       outnum*weightair/weightmolar(ks)/ &
                       densityoutgrid(ix,jy,kz)
                else ! concentration is zero
592
                  sp_zer=.true.
593
                endif
594
595
596
              end do
            end do
          end do
597
598
599
600
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
601
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
602

603
        endif ! output for ppt
604

605
606
      end do
    end do
607
608
609
610
611
612

    close(unitoutgridppt)
    close(unitoutgrid)

  end do

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
! RLT Aug 2017
! Write out conversion factor for dry air
  inquire(file=path(2)(1:length(2))//'factor_drygrid',exist=lexist)
  if (lexist) then
    ! open and append
    open(unitoutfactor,file=path(2)(1:length(2))//'factor_drygrid',form='unformatted',&
            status='old',action='write',access='append')
  else
    ! create new
    open(unitoutfactor,file=path(2)(1:length(2))//'factor_drygrid',form='unformatted',&
            status='new',action='write')
  endif
  sp_count_i=0
  sp_count_r=0
  sp_fact=-1.
  sp_zer=.true.
  do kz=1,1
    do jy=0,numygrid-1
      do ix=0,numxgrid-1
        if (factor_drygrid(ix,jy,kz).gt.(1.+smallnum).or.factor_drygrid(ix,jy,kz).lt.(1.-smallnum)) then
          if (sp_zer.eqv..true.) then ! first value not equal to one
            sp_count_i=sp_count_i+1
            sparse_dump_i(sp_count_i)= &
                  ix+jy*numxgrid+kz*numxgrid*numygrid
            sp_zer=.false.
            sp_fact=sp_fact*(-1.)
          endif
          sp_count_r=sp_count_r+1
          sparse_dump_r(sp_count_r)= &
               sp_fact*factor_drygrid(ix,jy,kz)
        else ! factor is one
          sp_zer=.true.
        endif
      end do
    end do
  end do
  write(unitoutfactor) sp_count_i
  write(unitoutfactor) (sparse_dump_i(i),i=1,sp_count_i)
  write(unitoutfactor) sp_count_r
  write(unitoutfactor) (sparse_dump_r(i),i=1,sp_count_r)
  close(unitoutfactor)


656
657
658
659
660
661
  if (gridtotal.gt.0.) gridtotalunc=gridsigmatotal/gridtotal
  if (wetgridtotal.gt.0.) wetgridtotalunc=wetgridsigmatotal/ &
       wetgridtotal
  if (drygridtotal.gt.0.) drygridtotalunc=drygridsigmatotal/ &
       drygridtotal

662
! Dump of receptor concentrations
663

664
665
666
667
668
669
670
  if (numreceptor.gt.0 .and. (iout.eq.2 .or. iout.eq.3)  ) then
    write(unitoutreceptppt) itime
    do ks=1,nspec
      write(unitoutreceptppt) (1.e12*creceptor(i,ks)/outnum* &
           weightair/weightmolar(ks)/densityoutrecept(i),i=1,numreceptor)
    end do
  endif
671

672
! Dump of receptor concentrations
673

674
675
676
677
678
679
680
  if (numreceptor.gt.0) then
    write(unitoutrecept) itime
    do ks=1,nspec
      write(unitoutrecept) (1.e12*creceptor(i,ks)/outnum, &
           i=1,numreceptor)
    end do
  endif
681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
! RLT Aug 2017
! Write out conversion factor for dry air
  if (numreceptor.gt.0) then
    inquire(file=path(2)(1:length(2))//'factor_dryreceptor',exist=lexist)
     if (lexist) then
     ! open and append
      open(unitoutfactor,file=path(2)(1:length(2))//'factor_dryreceptor',form='unformatted',&
              status='old',action='write',access='append')
    else
      ! create new
      open(unitoutfactor,file=path(2)(1:length(2))//'factor_dryreceptor',form='unformatted',&
              status='new',action='write')
    endif
    write(unitoutfactor) itime
    write(unitoutfactor) (factor_dryrecept(i),i=1,numreceptor)
    close(unitoutfactor)
  endif
699

700
701
! Reinitialization of grid
!*************************
702
703

  do ks=1,nspec
704
705
706
707
708
709
710
711
712
713
714
    do kp=1,maxpointspec_act
      do i=1,numreceptor
        creceptor(i,ks)=0.
      end do
      do jy=0,numygrid-1
        do ix=0,numxgrid-1
          do l=1,nclassunc
            do nage=1,nageclass
              do kz=1,numzgrid
                gridunc(ix,jy,kz,ks,kp,l,nage)=0.
              end do
715
716
717
718
719
720
721
722
723
            end do
          end do
        end do
      end do
    end do
  end do


end subroutine concoutput_surf