concoutput_inversion_nest.f90 25.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine concoutput_inversion_nest(itime,outnum)
  !                        i     i
  !*****************************************************************************
  !                                                                            *
  !     Output of the concentration grid and the receptor concentrations.      *
  !                                                                            *
  !     Author: A. Stohl                                                       *
  !                                                                            *
  !     24 May 1995                                                            *
  !                                                                            *
  !     13 April 1999, Major update: if output size is smaller, dump output    *
  !                    in sparse matrix format; additional output of           *
  !                    uncertainty                                             *
  !                                                                            *
  !     05 April 2000, Major update: output of age classes; output for backward*
  !                    runs is time spent in grid cell times total mass of     *
  !                    species.                                                *
  !                                                                            *
  !     17 February 2002, Appropriate dimensions for backward and forward runs *
  !                       are now specified in file par_mod                    *
  !                                                                            *
  !     June 2006, write grid in sparse matrix with a single write command     *
  !                in order to save disk space                                 *
  !                                                                            *
  !     2008 new sparse matrix format                                          *
  !
  !     January 2017,  Separate files by release but include all timesteps     *
  !                                                                            *
  !*****************************************************************************
  !                                                                            *
  ! Variables:                                                                 *
  ! outnum          number of samples                                          *
  ! ncells          number of cells with non-zero concentrations               *
  ! sparse          .true. if in sparse matrix format, else .false.            *
  ! tot_mu          1 for forward, initial mass mixing ration for backw. runs  *
  !                                                                            *
  !*****************************************************************************

  use unc_mod
  use point_mod
  use outg_mod
  use par_mod
  use com_mod
  use mean_mod

  implicit none

  real(kind=dp) :: jul
  integer :: itime,i,ix,jy,kz,ks,kp,l,iix,jjy,kzz,nage,jjjjmmdd,ihmmss
  integer :: sp_count_i,sp_count_r
  real :: sp_fact
  real :: outnum,densityoutrecept(maxreceptor),xl,yl
! RLT
  real :: densitydryrecept(maxreceptor)
  real :: factor_dryrecept(maxreceptor)

  !real densityoutgrid(0:numxgrid-1,0:numygrid-1,numzgrid),
  !    +grid(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,maxpointspec_act,
  !    +    maxageclass)
  !real wetgrid(0:numxgrid-1,0:numygrid-1,maxspec,maxpointspec_act,
  !    +       maxageclass)
  !real drygrid(0:numxgrid-1,0:numygrid-1,maxspec,
  !    +       maxpointspec_act,maxageclass)
  !real gridsigma(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,
  !    +       maxpointspec_act,maxageclass),
  !    +     drygridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
  !    +     maxpointspec_act,maxageclass),
  !    +     wetgridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
  !    +     maxpointspec_act,maxageclass)
  !real factor(0:numxgrid-1,0:numygrid-1,numzgrid)
  !real sparse_dump_r(numxgrid*numygrid*numzgrid)
  !integer sparse_dump_i(numxgrid*numygrid*numzgrid)

  !real sparse_dump_u(numxgrid*numygrid*numzgrid)
  real(dep_prec) :: auxgrid(nclassunc)
  real :: halfheight,dz,dz1,dz2,tot_mu(maxspec,maxpointspec_act)
  real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled
  real,parameter :: weightair=28.97
  logical :: sp_zer
  logical,save :: lnstart=.true.
  logical,save,allocatable,dimension(:) :: lnstartrel
  character :: adate*8,atime*6
  character(len=3) :: anspec
  logical :: lexist
  character :: areldate*8,areltime*6

  if(lnstart) then
    allocate(lnstartrel(maxpointspec_act))
    lnstartrel(:)=.true.
  endif
  print*, 'lnstartrel = ',lnstartrel

  ! Determine current calendar date, needed for the file name
  !**********************************************************

  jul=bdate+real(itime,kind=dp)/86400._dp
  call caldate(jul,jjjjmmdd,ihmmss)
  write(adate,'(i8.8)') jjjjmmdd
  write(atime,'(i6.6)') ihmmss

  print*, 'outnum:',outnum
  print*, 'datetime:',adate//atime

  ! For forward simulations, output fields have dimension MAXSPEC,
  ! for backward simulations, output fields have dimension MAXPOINT.
  ! Thus, make loops either about nspec, or about numpoint
  !*****************************************************************


    if (ldirect.eq.1) then
       do ks=1,nspec
         do kp=1,maxpointspec_act
           tot_mu(ks,kp)=1
         end do
       end do
   else
      do ks=1,nspec
             do kp=1,maxpointspec_act
               tot_mu(ks,kp)=xmass(kp,ks)
             end do
      end do
    endif


  !*******************************************************************
  ! Compute air density: sufficiently accurate to take it
  ! from coarse grid at some time
  ! Determine center altitude of output layer, and interpolate density
  ! data to that altitude
  !*******************************************************************

  do kz=1,numzgrid
    if (kz.eq.1) then
      halfheight=outheight(1)/2.
    else
      halfheight=(outheight(kz)+outheight(kz-1))/2.
    endif
    do kzz=2,nz
      if ((height(kzz-1).lt.halfheight).and. &
           (height(kzz).gt.halfheight)) goto 46
    end do
46   kzz=max(min(kzz,nz),2)
    dz1=halfheight-height(kzz-1)
    dz2=height(kzz)-halfheight
    dz=dz1+dz2
    do jy=0,numygridn-1
      do ix=0,numxgridn-1
        xl=outlon0n+real(ix)*dxoutn
        yl=outlat0n+real(jy)*dyoutn
        xl=(xl-xlon0)/dx
        yl=(yl-ylat0)/dy
        iix=max(min(nint(xl),nxmin1),0)
        jjy=max(min(nint(yl),nymin1),0)
        densityoutgrid(ix,jy,kz)=(rho(iix,jjy,kzz,2)*dz1+ &
             rho(iix,jjy,kzz-1,2)*dz2)/dz
! RLT
        densitydrygrid(ix,jy,kz)=(rho_dry(iix,jjy,kzz,2)*dz1+ &
             rho_dry(iix,jjy,kzz-1,2)*dz2)/dz
      end do
    end do
  end do

  do i=1,numreceptor
    xl=xreceptor(i)
    yl=yreceptor(i)
    iix=max(min(nint(xl),nxmin1),0)
    jjy=max(min(nint(yl),nymin1),0)
    densityoutrecept(i)=rho(iix,jjy,1,2)
! RLT
    densitydryrecept(i)=rho_dry(iix,jjy,1,2)
  end do

! RLT
! conversion factor for output relative to dry air
  factor_drygrid=densityoutgrid/densitydrygrid
  factor_dryrecept=densityoutrecept/densitydryrecept

  ! Output is different for forward and backward simulations
    do kz=1,numzgrid
      do jy=0,numygridn-1
        do ix=0,numxgridn-1
          if (ldirect.eq.1) then
            factor3d(ix,jy,kz)=1.e12/volumen(ix,jy,kz)/outnum
          else
            factor3d(ix,jy,kz)=real(abs(loutaver))/outnum
          endif
        end do
      end do
    end do

  !*********************************************************************
  ! Determine the standard deviation of the mean concentration or mixing
  ! ratio (uncertainty of the output) and the dry and wet deposition
  !*********************************************************************

  do ks=1,nspec

  write(anspec,'(i3.3)') ks

    do kp=1,maxpointspec_act

      print*, 'itime = ',itime
      print*, 'lage(1) = ',lage(1)
      print*, 'ireleasestart(kp) = ',ireleasestart(kp)
      print*, 'ireleaseend(kp) = ',ireleaseend(kp)

      ! check itime is within release and backward trajectory length
      if (nageclass.eq.1) then
        if ((itime.gt.ireleaseend(kp)).or.(itime.lt.(ireleasestart(kp)-lage(1)))) then
          go to 10
        endif
      endif

      ! calculate date of release
      jul=bdate+real(ireleasestart(kp),kind=dp)/86400._dp    ! this is the current day
      call caldate(jul,jjjjmmdd,ihmmss)
      write(areldate,'(i8.8)') jjjjmmdd
      write(areltime,'(i6.6)') ihmmss
      print*, areldate//areltime

      ! calculate date of field
      jul=bdate+real(itime,kind=dp)/86400._dp
      call caldate(jul,jjjjmmdd,ihmmss)
      write(adate,'(i8.8)') jjjjmmdd
      write(atime,'(i6.6)') ihmmss
      print*, adate//atime

      if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then
        if (ldirect.eq.1) then
          ! concentrations
          inquire(file=path(2)(1:length(2))//'grid_conc_nest_'//areldate// &
                  areltime//'_'//anspec,exist=lexist)
          if(lexist.and..not.lnstartrel(kp)) then
            ! open and append to existing file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='old',action='write',access='append')
          else
            ! open new file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='replace',action='write')
          endif
        else
          ! residence times
          inquire(file=path(2)(1:length(2))//'grid_time_nest_'//areldate// &
                  areltime//'_'//anspec,exist=lexist)
          if(lexist.and..not.lnstartrel(kp)) then
            ! open and append to existing file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='old',action='write',access='append')
          else
            ! open new file
            open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_nest_'//areldate// &
                 areltime//'_'//anspec,form='unformatted',status='replace',action='write')
          endif
        endif
        write(unitoutgrid) jjjjmmdd
        write(unitoutgrid) ihmmss
      endif

      if ((iout.eq.2).or.(iout.eq.3)) then
        ! mixing ratio
        inquire(file=path(2)(1:length(2))//'grid_pptv_nest_'//areldate// &
                areltime//'_'//anspec,exist=lexist)
        if(lexist.and..not.lnstartrel(kp)) then
          ! open and append to existing file
          open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_nest_'//areldate// &
               areltime//'_'//anspec,form='unformatted',status='old',action='write',access='append')
        else
          ! open new file
          open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_nest_'//areldate// &
               areltime//'_'//anspec,form='unformatted',status='replace',action='write')
        endif
        write(unitoutgridppt) jjjjmmdd
        write(unitoutgridppt) ihmmss
      endif

      lnstartrel(kp)=.false.

      do nage=1,nageclass

        do jy=0,numygridn-1
          do ix=0,numxgridn-1

!  ! WET DEPOSITION
!            if ((WETDEP).and.(ldirect.gt.0)) then
!              do l=1,nclassunc
!                auxgrid(l)=wetgriduncn(ix,jy,ks,kp,l,nage)
!              end do
!              call mean(auxgrid,wetgrid(ix,jy), &
!                   wetgridsigma(ix,jy),nclassunc)
!  ! Multiply by number of classes to get total concentration
!              wetgrid(ix,jy)=wetgrid(ix,jy) &
!                   *nclassunc
!  ! Calculate standard deviation of the mean
!              wetgridsigma(ix,jy)= &
!                   wetgridsigma(ix,jy)* &
!                   sqrt(real(nclassunc))
!            endif

!  ! DRY DEPOSITION
!            if ((DRYDEP).and.(ldirect.gt.0)) then
!              do l=1,nclassunc
!                auxgrid(l)=drygriduncn(ix,jy,ks,kp,l,nage)
!              end do
!              call mean(auxgrid,drygrid(ix,jy), &
!                   drygridsigma(ix,jy),nclassunc)
!  ! Multiply by number of classes to get total concentration
!              drygrid(ix,jy)=drygrid(ix,jy)* &
!                   nclassunc
!  ! Calculate standard deviation of the mean
!              drygridsigma(ix,jy)= &
!                   drygridsigma(ix,jy)* &
!                   sqrt(real(nclassunc))
!            endif

  ! CONCENTRATION OR MIXING RATIO
            do kz=1,numzgrid
              do l=1,nclassunc
                auxgrid(l)=griduncn(ix,jy,kz,ks,kp,l,nage)
              end do
              call mean(auxgrid,grid(ix,jy,kz), &
                     gridsigma(ix,jy,kz),nclassunc)
  ! Multiply by number of classes to get total concentration
              grid(ix,jy,kz)= &
                   grid(ix,jy,kz)*nclassunc
  ! Calculate standard deviation of the mean
              gridsigma(ix,jy,kz)= &
                   gridsigma(ix,jy,kz)* &
                   sqrt(real(nclassunc))
            end do
          end do
        end do


  !*******************************************************************
  ! Generate output: may be in concentration (ng/m3) or in mixing
  ! ratio (ppt) or both
  ! Output the position and the values alternated multiplied by
  ! 1 or -1, first line is number of values, number of positions
  ! For backward simulations, the unit is seconds, stored in grid_time
  !*******************************************************************

  ! Concentration output
  !*********************

        if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then

!  ! Wet deposition
!          sp_count_i=0
!          sp_count_r=0
!          sp_fact=-1.
!          sp_zer=.true.
!          if ((ldirect.eq.1).and.(WETDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!  ! concentration greater zero
!              if (wetgrid(ix,jy).gt.smallnum) then
!                 if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)=ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1.)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact*1.e12*wetgrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*wetgridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!         end do
!         else
!            sp_count_i=0
!            sp_count_r=0
!         endif
!         write(unitoutgrid) sp_count_i
!         write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)

!  ! Dry deposition
!         sp_count_i=0
!         sp_count_r=0
!         sp_fact=-1.
!         sp_zer=.true.
!         if ((ldirect.eq.1).and.(DRYDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!              if (drygrid(ix,jy).gt.smallnum) then
!                 if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)=ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1.)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact* &
!                      1.e12*drygrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*drygridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!          end do
!         else
!            sp_count_i=0
!            sp_count_r=0
!         endif
!         write(unitoutgrid) sp_count_i
!         write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
!

  ! Concentrations

  ! surf_only write only 1st layer 

         sp_count_i=0
         sp_count_r=0
         sp_fact=-1.
         sp_zer=.true.
          do kz=1,1
            do jy=0,numygridn-1
              do ix=0,numxgridn-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgridn+kz*numxgridn*numygridn
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
                   endif
                   sp_count_r=sp_count_r+1
                   sparse_dump_r(sp_count_r)= &
                        sp_fact* &
                        grid(ix,jy,kz)* &
                        factor3d(ix,jy,kz)/tot_mu(ks,kp)
  !                 if ((factor(ix,jy,kz)/tot_mu(ks,kp)).eq.0)
  !    +              write (*,*) factor(ix,jy,kz),tot_mu(ks,kp),ks,kp
                   sparse_dump_u(sp_count_r)= &
                        gridsigma(ix,jy,kz)* &
                        factor3d(ix,jy,kz)/tot_mu(ks,kp)
              else ! concentration is zero
                  sp_zer=.true.
              endif
              end do
            end do
          end do
         write(unitoutgrid) sp_count_i
         write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
         write(unitoutgrid) sp_count_r
         write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgrid) sp_count_r
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)

      endif !  concentration output

  ! Mixing ratio output
  !********************

      if ((iout.eq.2).or.(iout.eq.3)) then      ! mixing ratio

!  ! Wet deposition
!         sp_count_i=0
!         sp_count_r=0
!         sp_fact=-1.
!         sp_zer=.true.
!         if ((ldirect.eq.1).and.(WETDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!                if (wetgrid(ix,jy).gt.smallnum) then
!                  if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)= &
!                         ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1.)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact* &
!                      1.e12*wetgrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*wetgridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!          end do
!         else
!           sp_count_i=0
!           sp_count_r=0
!         endif
!         write(unitoutgridppt) sp_count_i
!         write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
!

!  ! Dry deposition
!         sp_count_i=0
!         sp_count_r=0
!         sp_fact=-1.
!         sp_zer=.true.
!         if ((ldirect.eq.1).and.(DRYDEP)) then
!          do jy=0,numygridn-1
!            do ix=0,numxgridn-1
!                if (drygrid(ix,jy).gt.smallnum) then
!                  if (sp_zer.eqv..true.) then ! first non zero value
!                    sp_count_i=sp_count_i+1
!                    sparse_dump_i(sp_count_i)= &
!                         ix+jy*numxgridn
!                    sp_zer=.false.
!                    sp_fact=sp_fact*(-1)
!                 endif
!                 sp_count_r=sp_count_r+1
!                 sparse_dump_r(sp_count_r)= &
!                      sp_fact* &
!                      1.e12*drygrid(ix,jy)/arean(ix,jy)
!                 sparse_dump_u(sp_count_r)= &
!                      1.e12*drygridsigma(ix,jy)/area(ix,jy)
!              else ! concentration is zero
!                  sp_zer=.true.
!              endif
!            end do
!          end do
!         else
!           sp_count_i=0
!           sp_count_r=0
!         endif
!         write(unitoutgridppt) sp_count_i
!         write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
!         write(unitoutgridppt) sp_count_r
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
!

  ! Mixing ratios

    ! surf_only write only 1st layer 

         sp_count_i=0
         sp_count_r=0
         sp_fact=-1.
         sp_zer=.true.
          do kz=1,1
            do jy=0,numygridn-1
              do ix=0,numxgridn-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgridn+kz*numxgridn*numygridn
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
                 endif
                 sp_count_r=sp_count_r+1
                 sparse_dump_r(sp_count_r)= &
                      sp_fact* &
                      1.e12*grid(ix,jy,kz) &
                      /volumen(ix,jy,kz)/outnum* &
                      weightair/weightmolar(ks)/densityoutgrid(ix,jy,kz)
                 sparse_dump_u(sp_count_r)= &
                      1.e12*gridsigma(ix,jy,kz)/volumen(ix,jy,kz)/ &
                      outnum*weightair/weightmolar(ks)/ &
                      densityoutgrid(ix,jy,kz)
              else ! concentration is zero
                  sp_zer=.true.
              endif
              end do
            end do
          end do
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
!          write(unitoutgridppt) sp_count_r
!          write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)

        endif ! output for ppt
 
      end do ! nageclass

      close(unitoutgridppt)
      close(unitoutgrid)

      ! itime is outside range
10    continue

    end do ! maxpointspec_act

  end do ! nspec


! RLT Aug 2017
! Write out conversion factor for dry air
  inquire(file=path(2)(1:length(2))//'factor_drygrid_nest',exist=lexist)
  if (lexist.and..not.lnstart) then
    ! open and append
    open(unitoutfactor,file=path(2)(1:length(2))//'factor_drygrid_nest',form='unformatted',&
            status='old',action='write',access='append')
  else
    ! create new
    open(unitoutfactor,file=path(2)(1:length(2))//'factor_drygrid_nest',form='unformatted',&
            status='replace',action='write')
  endif
  sp_count_i=0
  sp_count_r=0
  sp_fact=-1.
  sp_zer=.true.
  do kz=1,1
    do jy=0,numygridn-1
      do ix=0,numxgridn-1
        if (factor_drygrid(ix,jy,kz).gt.(1.+smallnum).or.factor_drygrid(ix,jy,kz).lt.(1.-smallnum)) then
          if (sp_zer.eqv..true.) then ! first value not equal to one
            sp_count_i=sp_count_i+1
            sparse_dump_i(sp_count_i)= &
                  ix+jy*numxgridn+kz*numxgridn*numygridn
            sp_zer=.false.
            sp_fact=sp_fact*(-1.)
          endif
          sp_count_r=sp_count_r+1
          sparse_dump_r(sp_count_r)= &
               sp_fact*factor_drygrid(ix,jy,kz)
        else ! factor is one
          sp_zer=.true.
        endif
      end do
    end do
  end do
  write(unitoutfactor) sp_count_i
  write(unitoutfactor) (sparse_dump_i(i),i=1,sp_count_i)
  write(unitoutfactor) sp_count_r
  write(unitoutfactor) (sparse_dump_r(i),i=1,sp_count_r)
  close(unitoutfactor)

  ! reset lnstart
  if (lnstart) then
    lnstart=.false.
  endif

  ! Reinitialization of grid
  !*************************

  do ks=1,nspec
  do kp=1,maxpointspec_act
    do i=1,numreceptor
      creceptor(i,ks)=0.
    end do
    do jy=0,numygridn-1
      do ix=0,numxgridn-1
        do l=1,nclassunc
          do nage=1,nageclass
            do kz=1,numzgrid
              griduncn(ix,jy,kz,ks,kp,l,nage)=0.
            end do
          end do
        end do
      end do
    end do
  end do
  end do


end subroutine concoutput_inversion_nest