conccalc.f90 15 KB
Newer Older
Matthias Langer's avatar
 
Matthias Langer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine conccalc(itime,weight)
23
  !                 i     i
Matthias Langer's avatar
 
Matthias Langer committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  !*****************************************************************************
  !                                                                            *
  !     Calculation of the concentrations on a regular grid using volume       *
  !     sampling                                                               *
  !                                                                            *
  !     Author: A. Stohl                                                       *
  !                                                                            *
  !     24 May 1996                                                            *
  !                                                                            *
  !     April 2000: Update to calculate age spectra                            *
  !                 Bug fix to avoid negative conc. at the domain boundaries,  *
  !                 as suggested by Petra Seibert                              *
  !                                                                            *
  !     2 July 2002: re-order if-statements in order to optimize CPU time      *
  !                                                                            *
  !                                                                            *
  !*****************************************************************************
  !                                                                            *
  ! Variables:                                                                 *
  ! nspeciesdim     = nspec for forward runs, 1 for backward runs              *
  !                                                                            *
  !*****************************************************************************

  use unc_mod
  use outg_mod
  use par_mod
  use com_mod

  implicit none

  integer :: itime,itage,i,ix,jy,ixp,jyp,kz,ks,n,nage
  integer :: il,ind,indz,indzp,nrelpointer
  real :: rddx,rddy,p1,p2,p3,p4,dz1,dz2,dz
  real :: weight,hx,hy,hz,h,xd,yd,zd,xkern,r2,c(maxspec),ddx,ddy
  real :: rhoprof(2),rhoi
  real :: xl,yl,wx,wy,w
  real,parameter :: factor=.596831, hxmax=6.0, hymax=4.0, hzmax=150.


  ! For forward simulations, make a loop over the number of species;
  ! for backward simulations, make an additional loop over the
  ! releasepoints
  !***************************************************************************

  do i=1,numpart
    if (itra1(i).ne.itime) goto 20

  ! Determine age class of the particle
    itage=abs(itra1(i)-itramem(i))
    do nage=1,nageclass
      if (itage.lt.lage(nage)) goto 33
    end do
33   continue


  ! For special runs, interpolate the air density to the particle position
  !************************************************************************
  !***********************************************************************
  !AF IND_SOURCE switches between different units for concentrations at the source
  !Af    NOTE that in backward simulations the release of particles takes place
  !Af    at the receptor and the sampling at the source.
  !Af          1="mass"
  !Af          2="mass mixing ratio"
  !Af IND_RECEPTOR switches between different units for concentrations at the receptor
  !Af          1="mass"
  !Af          2="mass mixing ratio"

  !Af switches for the conccalcfile:
  !AF IND_SAMP =  0 : xmass * 1
  !Af IND_SAMP = -1 : xmass / rho

  !Af ind_samp is defined in readcommand.f

    if ( ind_samp .eq. -1 ) then

      ix=int(xtra1(i))
      jy=int(ytra1(i))
      ixp=ix+1
      jyp=jy+1
103
104
105
106
107
      ! fix (Espen 02.05.2017)
      if(jyp>=nymax) then
        write(*,*) 'WARNING: conccalc.f90 jyp>nymax'
        jyp=jyp-1
      endif
Matthias Langer's avatar
 
Matthias Langer committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
      ddx=xtra1(i)-real(ix)
      ddy=ytra1(i)-real(jy)
      rddx=1.-ddx
      rddy=1.-ddy
      p1=rddx*rddy
      p2=ddx*rddy
      p3=rddx*ddy
      p4=ddx*ddy

      do il=2,nz
        if (height(il).gt.ztra1(i)) then
          indz=il-1
          indzp=il
          goto 6
        endif
      end do
6     continue

      dz1=ztra1(i)-height(indz)
      dz2=height(indzp)-ztra1(i)
      dz=1./(dz1+dz2)

  ! Take density from 2nd wind field in memory (accurate enough, no time interpolation needed)
  !*****************************************************************************
      do ind=indz,indzp
133
        rhoprof(ind-indz+1)=p1*rho(ix ,jy ,ind,memind(2)) &
Matthias Langer's avatar
 
Matthias Langer committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
             +p2*rho(ixp,jy ,ind,2) &
             +p3*rho(ix ,jyp,ind,2) &
             +p4*rho(ixp,jyp,ind,2)
      end do
      rhoi=(dz1*rhoprof(2)+dz2*rhoprof(1))*dz
   elseif (ind_samp.eq.0) then
      rhoi = 1.
   endif


  !****************************************************************************
  ! 1. Evaluate grid concentrations using a uniform kernel of bandwidths dx, dy
  !****************************************************************************


  ! For backward simulations, look from which release point the particle comes from
  ! For domain-filling trajectory option, npoint contains a consecutive particle
  ! number, not the release point information. Therefore, nrelpointer is set to 1
  ! for the domain-filling option.
  !*****************************************************************************

    if ((ioutputforeachrelease.eq.0).or.(mdomainfill.eq.1)) then
       nrelpointer=1
    else
       nrelpointer=npoint(i)
    endif

    do kz=1,numzgrid                ! determine height of cell
      if (outheight(kz).gt.ztra1(i)) goto 21
    end do
21   continue
    if (kz.le.numzgrid) then           ! inside output domain


  !********************************
  ! Do everything for mother domain
  !********************************

      xl=(xtra1(i)*dx+xoutshift)/dxout
      yl=(ytra1(i)*dy+youtshift)/dyout
      ix=int(xl)
      if (xl.lt.0.) ix=ix-1
      jy=int(yl)
      if (yl.lt.0.) jy=jy-1

  ! if (i.eq.10000) write(*,*) itime,xtra1(i),ytra1(i),ztra1(i),xl,yl


  ! For particles aged less than 3 hours, attribute particle mass to grid cell
  ! it resides in rather than use the kernel, in order to avoid its smoothing effect.
  ! For older particles, use the uniform kernel.
  ! If a particle is close to the domain boundary, do not use the kernel either.
  !*****************************************************************************

188
      if (lnokernel.or.(itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. &
Matthias Langer's avatar
 
Matthias Langer committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
           (xl.gt.real(numxgrid-1)-0.5).or. &
           (yl.gt.real(numygrid-1)-0.5)) then             ! no kernel, direct attribution to grid cell
        if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgrid-1).and. &
             (jy.le.numygrid-1)) then
          do ks=1,nspec
            gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
                 gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
                 xmass1(i,ks)/rhoi*weight
          end do
        endif

      else                                 ! attribution via uniform kernel

        ddx=xl-real(ix)                   ! distance to left cell border
        ddy=yl-real(jy)                   ! distance to lower cell border
        if (ddx.gt.0.5) then
          ixp=ix+1
          wx=1.5-ddx
        else
          ixp=ix-1
          wx=0.5+ddx
        endif

        if (ddy.gt.0.5) then
          jyp=jy+1
          wy=1.5-ddy
        else
          jyp=jy-1
          wy=0.5+ddy
        endif


  ! Determine mass fractions for four grid points
  !**********************************************

        if ((ix.ge.0).and.(ix.le.numxgrid-1)) then
          if ((jy.ge.0).and.(jy.le.numygrid-1)) then
            w=wx*wy
            do ks=1,nspec
              gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
                   gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
                   xmass1(i,ks)/rhoi*weight*w
            end do
          endif

          if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then
            w=wx*(1.-wy)
            do ks=1,nspec
              gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
                   gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
                   xmass1(i,ks)/rhoi*weight*w
            end do
          endif
        endif


        if ((ixp.ge.0).and.(ixp.le.numxgrid-1)) then
          if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then
            w=(1.-wx)*(1.-wy)
            do ks=1,nspec
              gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
                   gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
                   xmass1(i,ks)/rhoi*weight*w
            end do
          endif

          if ((jy.ge.0).and.(jy.le.numygrid-1)) then
            w=(1.-wx)*wy
            do ks=1,nspec
              gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= &
                   gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
                   xmass1(i,ks)/rhoi*weight*w
            end do
          endif
        endif
      endif



  !************************************
  ! Do everything for the nested domain
  !************************************

      if (nested_output.eq.1) then
        xl=(xtra1(i)*dx+xoutshiftn)/dxoutn
        yl=(ytra1(i)*dy+youtshiftn)/dyoutn
        ix=int(xl)
        if (xl.lt.0.) ix=ix-1
        jy=int(yl)
        if (yl.lt.0.) jy=jy-1


  ! For particles aged less than 3 hours, attribute particle mass to grid cell
  ! it resides in rather than use the kernel, in order to avoid its smoothing effect.
  ! For older particles, use the uniform kernel.
  ! If a particle is close to the domain boundary, do not use the kernel either.
  !*****************************************************************************

        if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. &
             (xl.gt.real(numxgridn-1)-0.5).or. &
             (yl.gt.real(numygridn-1)-0.5)) then             ! no kernel, direct attribution to grid cell
          if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgridn-1).and. &
               (jy.le.numygridn-1)) then
            do ks=1,nspec
              griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
                   griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
                   xmass1(i,ks)/rhoi*weight
            end do
          endif

        else                                 ! attribution via uniform kernel

          ddx=xl-real(ix)                   ! distance to left cell border
          ddy=yl-real(jy)                   ! distance to lower cell border
          if (ddx.gt.0.5) then
            ixp=ix+1
            wx=1.5-ddx
          else
            ixp=ix-1
            wx=0.5+ddx
          endif

          if (ddy.gt.0.5) then
            jyp=jy+1
            wy=1.5-ddy
          else
            jyp=jy-1
            wy=0.5+ddy
          endif


  ! Determine mass fractions for four grid points
  !**********************************************

          if ((ix.ge.0).and.(ix.le.numxgridn-1)) then
            if ((jy.ge.0).and.(jy.le.numygridn-1)) then
              w=wx*wy
              do ks=1,nspec
                griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
                     griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
                     xmass1(i,ks)/rhoi*weight*w
              end do
            endif

            if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then
              w=wx*(1.-wy)
              do ks=1,nspec
                griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
                     griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
                     xmass1(i,ks)/rhoi*weight*w
              end do
            endif
          endif


          if ((ixp.ge.0).and.(ixp.le.numxgridn-1)) then
            if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then
              w=(1.-wx)*(1.-wy)
              do ks=1,nspec
                griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
                     griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
                     xmass1(i,ks)/rhoi*weight*w
              end do
            endif

            if ((jy.ge.0).and.(jy.le.numygridn-1)) then
              w=(1.-wx)*wy
              do ks=1,nspec
                griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= &
                     griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
                     xmass1(i,ks)/rhoi*weight*w
              end do
            endif
          endif
        endif

      endif
    endif
20  continue
  end do

  !***********************************************************************
  ! 2. Evaluate concentrations at receptor points, using the kernel method
  !***********************************************************************

  do n=1,numreceptor


  ! Reset concentrations
  !*********************

    do ks=1,nspec
      c(ks)=0.
    end do


  ! Estimate concentration at receptor
  !***********************************

    do i=1,numpart

      if (itra1(i).ne.itime) goto 40
      itage=abs(itra1(i)-itramem(i))

      hz=min(50.+0.3*sqrt(real(itage)),hzmax)
      zd=ztra1(i)/hz
      if (zd.gt.1.) goto 40          ! save computing time, leave loop

      hx=min((0.29+2.222e-3*sqrt(real(itage)))*dx+ &
           real(itage)*1.2e-5,hxmax)                     ! 80 km/day
      xd=(xtra1(i)-xreceptor(n))/hx
      if (xd*xd.gt.1.) goto 40       ! save computing time, leave loop

      hy=min((0.18+1.389e-3*sqrt(real(itage)))*dy+ &
           real(itage)*7.5e-6,hymax)                     ! 80 km/day
      yd=(ytra1(i)-yreceptor(n))/hy
      if (yd*yd.gt.1.) goto 40       ! save computing time, leave loop
      h=hx*hy*hz

      r2=xd*xd+yd*yd+zd*zd
      if (r2.lt.1.) then
        xkern=factor*(1.-r2)
        do ks=1,nspec
          c(ks)=c(ks)+xmass1(i,ks)*xkern/h
        end do
      endif
40    continue
    end do

    do ks=1,nspec
      creceptor(n,ks)=creceptor(n,ks)+2.*weight*c(ks)/receptorarea(n)
    end do
  end do

end subroutine conccalc