convmix.f90 11.2 KB
Newer Older
Matthias Langer's avatar
 
Matthias Langer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

22
subroutine convmix(itime,metdata_format)
Matthias Langer's avatar
 
Matthias Langer committed
23
24
25
26
27
28
29
30
31
32
  !                     i
  !**************************************************************
  !handles all the calculations related to convective mixing
  !Petra Seibert, Bernd C. Krueger, Feb 2001
  !nested grids included, Bernd C. Krueger, May 2001
  !
  !Changes by Caroline Forster, April 2004 - February 2005:
  !  convmix called every lsynctime seconds
  !CHANGES by A. Stohl:
  !  various run-time optimizations - February 2005
33
34
35
36
37
38
39
40
41
42
  ! CHANGES by C. Forster, November 2005, NCEP GFS version
  !      in the ECMWF version convection is calculated on the
  !      original eta-levels
  !      in the GFS version convection is calculated on the
  !      FLEXPART levels
  !
  !   Unified ECMWF and GFS builds                                             
  !   Marian Harustak, 12.5.2017                                              
  !     - Merged convmix and convmix_gfs into one routine using if-then           
  !       for meteo-type dependent code                                        
Matthias Langer's avatar
 
Matthias Langer committed
43
44
45
46
47
48
  !**************************************************************

  use flux_mod
  use par_mod
  use com_mod
  use conv_mod
49
  use class_gribfile
Matthias Langer's avatar
 
Matthias Langer committed
50
51
52
53
54
55
56

  implicit none

  integer :: igr,igrold, ipart, itime, ix, j, inest
  integer :: ipconv
  integer :: jy, kpart, ktop, ngrid,kz
  integer :: igrid(maxpart), ipoint(maxpart), igridn(maxpart,maxnests)
57
  integer :: metdata_format
58

Matthias Langer's avatar
 
Matthias Langer committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  ! itime [s]                 current time
  ! igrid(maxpart)            horizontal grid position of each particle
  ! igridn(maxpart,maxnests)  dto. for nested grids
  ! ipoint(maxpart)           pointer to access particles according to grid position

  logical :: lconv
  real :: x, y, xtn,ytn, ztold, delt
  real :: dt1,dt2,dtt
  integer :: mind1,mind2
  ! dt1,dt2,dtt,mind1,mind2       variables used for time interpolation
  integer :: itage,nage
  real,parameter :: eps=nxmax/3.e5


  !monitoring variables
  !real sumconv,sumall


  ! Calculate auxiliary variables for time interpolation
  !*****************************************************

  dt1=real(itime-memtime(1))
  dt2=real(memtime(2)-itime)
  dtt=1./(dt1+dt2)
  mind1=memind(1)
  mind2=memind(2)
  delt=real(abs(lsynctime))


  lconv = .false.

  ! if no particles are present return after initialization
  !********************************************************

  if (numpart.le.0) return

  ! Assign igrid and igridn, which are pseudo grid numbers indicating particles
  ! that are outside the part of the grid under consideration
  ! (e.g. particles near the poles or particles in other nests).
  ! Do this for all nests but use only the innermost nest; for all others
  ! igrid shall be -1
  ! Also, initialize index vector ipoint
  !************************************************************************

  do ipart=1,numpart
    igrid(ipart)=-1
    do j=numbnests,1,-1
      igridn(ipart,j)=-1
    end do
    ipoint(ipart)=ipart
  ! do not consider particles that are (yet) not part of simulation
    if (itra1(ipart).ne.itime) goto 20
    x = xtra1(ipart)
    y = ytra1(ipart)

  ! Determine which nesting level to be used
  !**********************************************************

    ngrid=0
118
    if (metdata_format.eq.GRIBFILE_CENTRE_ECMWF) then
Matthias Langer's avatar
 
Matthias Langer committed
119
120
121
122
123
124
125
    do j=numbnests,1,-1
      if ( x.gt.xln(j)+eps .and. x.lt.xrn(j)-eps .and. &
           y.gt.yln(j)+eps .and. y.lt.yrn(j)-eps ) then
        ngrid=j
        goto 23
      endif
    end do
126
127
128
129
130
131
132
133
134
    else
      do j=numbnests,1,-1
        if ( x.gt.xln(j) .and. x.lt.xrn(j) .and. &
             y.gt.yln(j) .and. y.lt.yrn(j) ) then
          ngrid=j
          goto 23
        endif
      end do
    endif
Matthias Langer's avatar
 
Matthias Langer committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
 23   continue

  ! Determine nested grid coordinates
  !**********************************

    if (ngrid.gt.0) then
  ! nested grids
      xtn=(x-xln(ngrid))*xresoln(ngrid)
      ytn=(y-yln(ngrid))*yresoln(ngrid)
      ix=nint(xtn)
      jy=nint(ytn)
      igridn(ipart,ngrid) = 1 + jy*nxn(ngrid) + ix
    else if(ngrid.eq.0) then
  ! mother grid
      ix=nint(x)
      jy=nint(y)
      igrid(ipart) = 1 + jy*nx + ix
    endif

 20 continue
  end do

157
158
  ! sumall = 0.
  ! sumconv = 0.
Matthias Langer's avatar
 
Matthias Langer committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

  !*****************************************************************************
  ! 1. Now, do everything for the mother domain and, later, for all of the nested domains
  ! While all particles have to be considered for redistribution, the Emanuel convection
  ! scheme only needs to be called once for every grid column where particles are present.
  ! Therefore, particles are sorted according to their grid position. Whenever a new grid
  ! cell is encountered by looping through the sorted particles, the convection scheme is called.
  !*****************************************************************************

  ! sort particles according to horizontal position and calculate index vector IPOINT

  call sort2(numpart,igrid,ipoint)

  ! Now visit all grid columns where particles are present
  ! by going through the sorted particles

  igrold = -1
  do kpart=1,numpart
    igr = igrid(kpart)
    if (igr .eq. -1) goto 50
    ipart = ipoint(kpart)
180
  ! sumall = sumall + 1
Matthias Langer's avatar
 
Matthias Langer committed
181
182
183
184
185
186
187
188
189
190
    if (igr .ne. igrold) then
  ! we are in a new grid column
      jy = (igr-1)/nx
      ix = igr - jy*nx - 1

  ! Interpolate all meteorological data needed for the convection scheme
      psconv=(ps(ix,jy,1,mind1)*dt2+ps(ix,jy,1,mind2)*dt1)*dtt
      tt2conv=(tt2(ix,jy,1,mind1)*dt2+tt2(ix,jy,1,mind2)*dt1)*dtt
      td2conv=(td2(ix,jy,1,mind1)*dt2+td2(ix,jy,1,mind2)*dt1)*dtt
!!$      do kz=1,nconvlev+1      !old
191
      if (metdata_format.eq.GRIBFILE_CENTRE_ECMWF) then
Matthias Langer's avatar
 
Matthias Langer committed
192
193
194
195
196
197
        do kz=1,nuvz-1           !bugfix
        tconv(kz)=(tth(ix,jy,kz+1,mind1)*dt2+ &
             tth(ix,jy,kz+1,mind2)*dt1)*dtt
        qconv(kz)=(qvh(ix,jy,kz+1,mind1)*dt2+ &
             qvh(ix,jy,kz+1,mind2)*dt1)*dtt
      end do
198
199
200
201
202
203
204
205
206
207
      else
        do kz=1,nuvz-1           !bugfix
          pconv(kz)=(pplev(ix,jy,kz,mind1)*dt2+ &
              pplev(ix,jy,kz,mind2)*dt1)*dtt
          tconv(kz)=(tt(ix,jy,kz,mind1)*dt2+ &
              tt(ix,jy,kz,mind2)*dt1)*dtt
          qconv(kz)=(qv(ix,jy,kz,mind1)*dt2+ &
              qv(ix,jy,kz,mind2)*dt1)*dtt
        end do
      end if
Matthias Langer's avatar
 
Matthias Langer committed
208
209

  ! Calculate translocation matrix
210
      call calcmatrix(lconv,delt,cbaseflux(ix,jy),metdata_format)
Matthias Langer's avatar
 
Matthias Langer committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
      igrold = igr
      ktop = 0
    endif

  ! treat particle only if column has convection
    if (lconv .eqv. .true.) then
  ! assign new vertical position to particle

      ztold=ztra1(ipart)
      call redist(ipart,ktop,ipconv)
  !    if (ipconv.le.0) sumconv = sumconv+1

  ! Calculate the gross fluxes across layer interfaces
  !***************************************************

      if (iflux.eq.1) then
        itage=abs(itra1(ipart)-itramem(ipart))
        do nage=1,nageclass
          if (itage.lt.lage(nage)) goto 37
        end do
 37     continue

        if (nage.le.nageclass) &
             call calcfluxes(nage,ipart,real(xtra1(ipart)), &
             real(ytra1(ipart)),ztold)
      endif

    endif   !(lconv .eqv. .true)
 50 continue
  end do


  !*****************************************************************************
  ! 2. Nested domains
  !*****************************************************************************

  ! sort particles according to horizontal position and calculate index vector IPOINT

  do inest=1,numbnests
    do ipart=1,numpart
      ipoint(ipart)=ipart
      igrid(ipart) = igridn(ipart,inest)
    enddo
    call sort2(numpart,igrid,ipoint)

  ! Now visit all grid columns where particles are present
  ! by going through the sorted particles

    igrold = -1
    do kpart=1,numpart
      igr = igrid(kpart)
      if (igr .eq. -1) goto 60
      ipart = ipoint(kpart)
264
      ! sumall = sumall + 1
Matthias Langer's avatar
 
Matthias Langer committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
      if (igr .ne. igrold) then
  ! we are in a new grid column
        jy = (igr-1)/nxn(inest)
        ix = igr - jy*nxn(inest) - 1

  ! Interpolate all meteorological data needed for the convection scheme
        psconv=(psn(ix,jy,1,mind1,inest)*dt2+ &
             psn(ix,jy,1,mind2,inest)*dt1)*dtt
        tt2conv=(tt2n(ix,jy,1,mind1,inest)*dt2+ &
             tt2n(ix,jy,1,mind2,inest)*dt1)*dtt
        td2conv=(td2n(ix,jy,1,mind1,inest)*dt2+ &
             td2n(ix,jy,1,mind2,inest)*dt1)*dtt
!!$        do kz=1,nconvlev+1    !old
        do kz=1,nuvz-1           !bugfix
          tconv(kz)=(tthn(ix,jy,kz+1,mind1,inest)*dt2+ &
               tthn(ix,jy,kz+1,mind2,inest)*dt1)*dtt
          qconv(kz)=(qvhn(ix,jy,kz+1,mind1,inest)*dt2+ &
               qvhn(ix,jy,kz+1,mind2,inest)*dt1)*dtt
        end do

  ! calculate translocation matrix
  !*******************************
287
        call calcmatrix(lconv,delt,cbasefluxn(ix,jy,inest),metdata_format)
Matthias Langer's avatar
 
Matthias Langer committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        igrold = igr
        ktop = 0
      endif

  ! treat particle only if column has convection
      if (lconv .eqv. .true.) then
  ! assign new vertical position to particle
        ztold=ztra1(ipart)
        call redist(ipart,ktop,ipconv)
  !      if (ipconv.le.0) sumconv = sumconv+1

  ! Calculate the gross fluxes across layer interfaces
  !***************************************************

        if (iflux.eq.1) then
          itage=abs(itra1(ipart)-itramem(ipart))
          do nage=1,nageclass
            if (itage.lt.lage(nage)) goto 47
          end do
 47       continue

          if (nage.le.nageclass) &
               call calcfluxes(nage,ipart,real(xtra1(ipart)), &
               real(ytra1(ipart)),ztold)
        endif

      endif !(lconv .eqv. .true.)


60    continue
    end do
  end do
  !--------------------------------------------------------------------------
321
322
  ! write(*,*)'############################################'
  ! write(*,*)'TIME=',&
Matthias Langer's avatar
 
Matthias Langer committed
323
  !    &  itime
324
  ! write(*,*)'fraction of particles under convection',&
Matthias Langer's avatar
 
Matthias Langer committed
325
  !    &  sumconv/(sumall+0.001)
326
  ! write(*,*)'total number of particles',&
Matthias Langer's avatar
 
Matthias Langer committed
327
  !    &  sumall
328
  ! write(*,*)'number of particles under convection',&
Matthias Langer's avatar
 
Matthias Langer committed
329
  !    &  sumconv
330
  ! write(*,*)'############################################'
Matthias Langer's avatar
 
Matthias Langer committed
331
332
333

  return
end subroutine convmix