init_domainfill.f90 14.6 KB
Newer Older
1
2
! SPDX-FileCopyrightText: FLEXPART 1998-2019, see flexpart_license.txt
! SPDX-License-Identifier: GPL-3.0-or-later
3

Matthias Langer's avatar
   
Matthias Langer committed
4
subroutine init_domainfill
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
!
!*****************************************************************************
!                                                                            *
! Initializes particles equally distributed over the first release location  *
! specified in file RELEASES. This box is assumed to be the domain for doing *
! domain-filling trajectory calculations.                                    *
! All particles carry the same amount of mass which alltogether comprises the*
! mass of air within the box.                                                *
!                                                                            *
!     Author: A. Stohl                                                       *
!                                                                            *
!     15 October 2002                                                        *
!                                                                            *
!*****************************************************************************
!                                                                            *
! Variables:                                                                 *
!                                                                            *
! numparticlecount    consecutively counts the number of particles released  *
! nx_we(2)       grid indices for western and eastern boundary of domain-    *
!                filling trajectory calculations                             *
! ny_sn(2)       grid indices for southern and northern boundary of domain-  *
!                filling trajectory calculations                             *
!                                                                            *
!*****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
29
30
31
32

  use point_mod
  use par_mod
  use com_mod
33
  use random_mod
Matthias Langer's avatar
   
Matthias Langer committed
34
35
36
37

  implicit none

  integer :: j,ix,jy,kz,ncolumn,numparttot
38
  real :: gridarea(0:nymax-1),pp(nzmax),ylat,ylatp,ylatm,hzone
Matthias Langer's avatar
   
Matthias Langer committed
39
40
41
42
43
44
45
46
47
48
  real :: cosfactm,cosfactp,deltacol,dz1,dz2,dz,pnew,fractus
  real,parameter :: pih=pi/180.
  real :: colmass(0:nxmax-1,0:nymax-1),colmasstotal,zposition

  integer :: ixm,ixp,jym,jyp,indzm,indzp,in,indzh,i,jj
  real :: pvpart,ddx,ddy,rddx,rddy,p1,p2,p3,p4,y1(2)

  integer :: idummy = -11


49
50
51
52
! Determine the release region (only full grid cells), over which particles
! shall be initialized
! Use 2 fields for west/east and south/north boundary
!**************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
53
54
55
56
57
58

  nx_we(1)=max(int(xpoint1(1)),0)
  nx_we(2)=min((int(xpoint2(1))+1),nxmin1)
  ny_sn(1)=max(int(ypoint1(1)),0)
  ny_sn(2)=min((int(ypoint2(1))+1),nymin1)

59
60
61
! For global simulations (both global wind data and global domain-filling),
! set a switch, such that no boundary conditions are used
!**************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
62
63
64
65
66
67
68
69
70
  if (xglobal.and.sglobal.and.nglobal) then
    if ((nx_we(1).eq.0).and.(nx_we(2).eq.nxmin1).and. &
         (ny_sn(1).eq.0).and.(ny_sn(2).eq.nymin1)) then
      gdomainfill=.true.
    else
      gdomainfill=.false.
    endif
  endif

71
72
73
74
! Exit here if resuming a run from particle dump
!***********************************************
  if (gdomainfill.and.ipin.ne.0) return

75
76
77
! Do not release particles twice (i.e., not at both in the leftmost and rightmost
! grid cell) for a global domain
!*****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
78
79
80
  if (xglobal) nx_we(2)=min(nx_we(2),nx-2)


81
82
83
! Calculate area of grid cell with formula M=2*pi*R*h*dx/360,
! see Netz, Formeln der Mathematik, 5. Auflage (1983), p.90
!************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

  do jy=ny_sn(1),ny_sn(2)      ! loop about latitudes
    ylat=ylat0+real(jy)*dy
    ylatp=ylat+0.5*dy
    ylatm=ylat-0.5*dy
    if ((ylatm.lt.0).and.(ylatp.gt.0.)) then
      hzone=1./dyconst
    else
      cosfactp=cos(ylatp*pih)*r_earth
      cosfactm=cos(ylatm*pih)*r_earth
      if (cosfactp.lt.cosfactm) then
        hzone=sqrt(r_earth**2-cosfactp**2)- &
             sqrt(r_earth**2-cosfactm**2)
      else
        hzone=sqrt(r_earth**2-cosfactm**2)- &
             sqrt(r_earth**2-cosfactp**2)
      endif
    endif
    gridarea(jy)=2.*pi*r_earth*hzone*dx/360.
  end do

105
! Do the same for the south pole
Matthias Langer's avatar
   
Matthias Langer committed
106
107
108
109
110
111
112
113
114
115
116
117

  if (sglobal) then
    ylat=ylat0
    ylatp=ylat+0.5*dy
    ylatm=ylat
    cosfactm=0.
    cosfactp=cos(ylatp*pih)*r_earth
    hzone=sqrt(r_earth**2-cosfactm**2)- &
         sqrt(r_earth**2-cosfactp**2)
    gridarea(0)=2.*pi*r_earth*hzone*dx/360.
  endif

118
! Do the same for the north pole
Matthias Langer's avatar
   
Matthias Langer committed
119
120
121
122
123
124
125
126
127
128
129
130
131

  if (nglobal) then
    ylat=ylat0+real(nymin1)*dy
    ylatp=ylat
    ylatm=ylat-0.5*dy
    cosfactp=0.
    cosfactm=cos(ylatm*pih)*r_earth
    hzone=sqrt(r_earth**2-cosfactp**2)- &
         sqrt(r_earth**2-cosfactm**2)
    gridarea(nymin1)=2.*pi*r_earth*hzone*dx/360.
  endif


132
133
! Calculate total mass of each grid column and of the whole atmosphere
!*********************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
134
135
136
137
138
139
140
141
142
143
144

  colmasstotal=0.
  do jy=ny_sn(1),ny_sn(2)          ! loop about latitudes
    do ix=nx_we(1),nx_we(2)      ! loop about longitudes
      pp(1)=rho(ix,jy,1,1)*r_air*tt(ix,jy,1,1)
      pp(nz)=rho(ix,jy,nz,1)*r_air*tt(ix,jy,nz,1)
      colmass(ix,jy)=(pp(1)-pp(nz))/ga*gridarea(jy)
      colmasstotal=colmasstotal+colmass(ix,jy)
    end do
  end do

145
  write(*,*) 'Atm. mass: ',colmasstotal
Matthias Langer's avatar
   
Matthias Langer committed
146
147
148
149


  if (ipin.eq.0) numpart=0

150
151
! Determine the particle positions
!*********************************
Matthias Langer's avatar
   
Matthias Langer committed
152
153
154
155
156
157
158
159
160
161
162

  numparttot=0
  numcolumn=0
  do jy=ny_sn(1),ny_sn(2)      ! loop about latitudes
    ylat=ylat0+real(jy)*dy
    do ix=nx_we(1),nx_we(2)      ! loop about longitudes
      ncolumn=nint(0.999*real(npart(1))*colmass(ix,jy)/ &
           colmasstotal)
      if (ncolumn.eq.0) goto 30
      if (ncolumn.gt.numcolumn) numcolumn=ncolumn

163
164
165
! Calculate pressure at the altitudes of model surfaces, using the air density
! information, which is stored as a 3-d field
!*****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
166
167
168
169
170
171
172
173
174
175
176
177
178

      do kz=1,nz
        pp(kz)=rho(ix,jy,kz,1)*r_air*tt(ix,jy,kz,1)
      end do


      deltacol=(pp(1)-pp(nz))/real(ncolumn)
      pnew=pp(1)+deltacol/2.
      jj=0
      do j=1,ncolumn
        jj=jj+1


179
180
181
182
! For columns with many particles (i.e. around the equator), distribute
! the particles equally, for columns with few particles (i.e. around the
! poles), distribute the particles randomly
!***********************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196


        if (ncolumn.gt.20) then
          pnew=pnew-deltacol
        else
          pnew=pp(1)-ran1(idummy)*(pp(1)-pp(nz))
        endif

        do kz=1,nz-1
          if ((pp(kz).ge.pnew).and.(pp(kz+1).lt.pnew)) then
            dz1=pp(kz)-pnew
            dz2=pnew-pp(kz+1)
            dz=1./(dz1+dz2)

197
198
199
200
! Assign particle position
!*************************
! Do the following steps only if particles are not read in from previous model run
!*****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
201
202
203
204
205
206
207
208
209
210
            if (ipin.eq.0) then
              xtra1(numpart+jj)=real(ix)-0.5+ran1(idummy)
              if (ix.eq.0) xtra1(numpart+jj)=ran1(idummy)
              if (ix.eq.nxmin1) xtra1(numpart+jj)= &
                   real(nxmin1)-ran1(idummy)
              ytra1(numpart+jj)=real(jy)-0.5+ran1(idummy)
              ztra1(numpart+jj)=(height(kz)*dz2+height(kz+1)*dz1)*dz
              if (ztra1(numpart+jj).gt.height(nz)-0.5) &
                   ztra1(numpart+jj)=height(nz)-0.5

211
212
! Interpolate PV to the particle position
!****************************************
Matthias Langer's avatar
   
Matthias Langer committed
213
214
215
216
              ixm=int(xtra1(numpart+jj))
              jym=int(ytra1(numpart+jj))
              ixp=ixm+1
              jyp=jym+1
217
218
219
220
              if (jyp.gt.180) then
                 write (*,*) 'init_domainfill, over: ',jyp,jym,ytra1(numpart+jj),jy,ran1(idummy),ny
                 jyp=jym
              endif
Matthias Langer's avatar
   
Matthias Langer committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
              ddx=xtra1(numpart+jj)-real(ixm)
              ddy=ytra1(numpart+jj)-real(jym)
              rddx=1.-ddx
              rddy=1.-ddy
              p1=rddx*rddy
              p2=ddx*rddy
              p3=rddx*ddy
              p4=ddx*ddy
              do i=2,nz
                if (height(i).gt.ztra1(numpart+jj)) then
                  indzm=i-1
                  indzp=i
                  goto 6
                endif
              end do
6             continue
              dz1=ztra1(numpart+jj)-height(indzm)
              dz2=height(indzp)-ztra1(numpart+jj)
              dz=1./(dz1+dz2)
              do in=1,2
                indzh=indzm+in-1
                y1(in)=p1*pv(ixm,jym,indzh,1) &
                     +p2*pv(ixp,jym,indzh,1) &
                     +p3*pv(ixm,jyp,indzh,1) &
                     +p4*pv(ixp,jyp,indzh,1)
              end do
              pvpart=(dz2*y1(1)+dz1*y1(2))*dz
              if (ylat.lt.0.) pvpart=-1.*pvpart


251
252
! For domain-filling option 2 (stratospheric O3), do the rest only in the stratosphere
!*****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
253
254
255
256

              if (((ztra1(numpart+jj).gt.3000.).and. &
                   (pvpart.gt.pvcrit)).or.(mdomainfill.eq.1)) then

257
258
! Assign certain properties to the particle
!******************************************
Matthias Langer's avatar
   
Matthias Langer committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                nclass(numpart+jj)=min(int(ran1(idummy)* &
                     real(nclassunc))+1,nclassunc)
                numparticlecount=numparticlecount+1
                npoint(numpart+jj)=numparticlecount
                idt(numpart+jj)=mintime
                itra1(numpart+jj)=0
                itramem(numpart+jj)=0
                itrasplit(numpart+jj)=itra1(numpart+jj)+ldirect* &
                     itsplit
                xmass1(numpart+jj,1)=colmass(ix,jy)/real(ncolumn)
                if (mdomainfill.eq.2) xmass1(numpart+jj,1)= &
                     xmass1(numpart+jj,1)*pvpart*48./29.*ozonescale/10.**9
              else
                jj=jj-1
              endif
            endif
          endif
        end do
      end do
      numparttot=numparttot+ncolumn
      if (ipin.eq.0) numpart=numpart+jj
30    continue
    end do
  end do


285
286
287
288
! Check whether numpart is really smaller than maxpart
!*****************************************************

! ESO :TODO: this warning need to be moved further up, else out-of-bounds error earlier
Matthias Langer's avatar
   
Matthias Langer committed
289
290
291
292
293
294
295
296
297
  if (numpart.gt.maxpart) then
    write(*,*) 'numpart too large: change source in init_atm_mass.f'
    write(*,*) 'numpart: ',numpart,' maxpart: ',maxpart
  endif


  xmassperparticle=colmasstotal/real(numparttot)


298
299
! Make sure that all particles are within domain
!***********************************************
Matthias Langer's avatar
   
Matthias Langer committed
300
301
302
303
304
305
306
307
308
309
310

  do j=1,numpart
    if ((xtra1(j).lt.0.).or.(xtra1(j).ge.real(nxmin1)).or. &
         (ytra1(j).lt.0.).or.(ytra1(j).ge.real(nymin1))) then
      itra1(j)=-999999999
    endif
  end do




311
312
313
314
315
316
317
318
319
! For boundary conditions, we need fewer particle release heights per column,
! because otherwise it takes too long until enough mass has accumulated to
! release a particle at the boundary (would take dx/u seconds), leading to
! relatively large position errors of the order of one grid distance.
! It's better to release fewer particles per column, but to do so more often.
! Thus, use on the order of nz starting heights per column.
! We thus repeat the above to determine fewer starting heights, that are
! used furtheron in subroutine boundcond_domainfill.f.
!****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

  fractus=real(numcolumn)/real(nz)
  write(*,*) 'Total number of particles at model start: ',numpart
  write(*,*) 'Maximum number of particles per column: ',numcolumn
  write(*,*) 'If ',fractus,' <1, better use more particles'
  fractus=sqrt(max(fractus,1.))/2.

  do jy=ny_sn(1),ny_sn(2)      ! loop about latitudes
    do ix=nx_we(1),nx_we(2)      ! loop about longitudes
      ncolumn=nint(0.999/fractus*real(npart(1))*colmass(ix,jy) &
           /colmasstotal)
      if (ncolumn.gt.maxcolumn) stop 'maxcolumn too small'
      if (ncolumn.eq.0) goto 80


335
336
337
338
! Memorize how many particles per column shall be used for all boundaries
! This is further used in subroutine boundcond_domainfill.f
! Use 2 fields for west/east and south/north boundary
!************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
339
340
341
342
343
344

      if (ix.eq.nx_we(1)) numcolumn_we(1,jy)=ncolumn
      if (ix.eq.nx_we(2)) numcolumn_we(2,jy)=ncolumn
      if (jy.eq.ny_sn(1)) numcolumn_sn(1,ix)=ncolumn
      if (jy.eq.ny_sn(2)) numcolumn_sn(2,ix)=ncolumn

345
346
347
! Calculate pressure at the altitudes of model surfaces, using the air density
! information, which is stored as a 3-d field
!*****************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
348
349
350
351
352

      do kz=1,nz
        pp(kz)=rho(ix,jy,kz,1)*r_air*tt(ix,jy,kz,1)
      end do

353
354
! Determine the reference starting altitudes
!*******************************************
Matthias Langer's avatar
   
Matthias Langer committed
355
356
357
358
359
360
361
362
363
364
365

      deltacol=(pp(1)-pp(nz))/real(ncolumn)
      pnew=pp(1)+deltacol/2.
      do j=1,ncolumn
        pnew=pnew-deltacol
        do kz=1,nz-1
          if ((pp(kz).ge.pnew).and.(pp(kz+1).lt.pnew)) then
            dz1=pp(kz)-pnew
            dz2=pnew-pp(kz+1)
            dz=1./(dz1+dz2)
            zposition=(height(kz)*dz2+height(kz+1)*dz1)*dz
366
            if (zposition.gt.height(nz)-0.5) zposition=height(nz)-0.5
Matthias Langer's avatar
   
Matthias Langer committed
367

368
369
370
! Memorize vertical positions where particles are introduced
! This is further used in subroutine boundcond_domainfill.f
!***********************************************************
Matthias Langer's avatar
   
Matthias Langer committed
371
372
373
374
375
376

            if (ix.eq.nx_we(1)) zcolumn_we(1,jy,j)=zposition
            if (ix.eq.nx_we(2)) zcolumn_we(2,jy,j)=zposition
            if (jy.eq.ny_sn(1)) zcolumn_sn(1,ix,j)=zposition
            if (jy.eq.ny_sn(2)) zcolumn_sn(2,ix,j)=zposition

377
378
! Initialize mass that has accumulated at boundary to zero
!*********************************************************
Matthias Langer's avatar
   
Matthias Langer committed
379
380
381
382
383
384
385
386
387
388
389
390

            acc_mass_we(1,jy,j)=0.
            acc_mass_we(2,jy,j)=0.
            acc_mass_sn(1,jy,j)=0.
            acc_mass_sn(2,jy,j)=0.
          endif
        end do
      end do
80    continue
    end do
  end do

391
392
393
394
395
396
397
398
399
! Reduce numpart if invalid particles at end of arrays
  do i=numpart, 1, -1
      if (itra1(i).eq.-999999999) then
        numpart=numpart-1
      else
        exit
      end if
    end do

400
401
402
403
! If particles shall be read in to continue an existing run,
! then the accumulated masses at the domain boundaries must be read in, too.
! This overrides any previous calculations.
!***************************************************************************
Matthias Langer's avatar
   
Matthias Langer committed
404

405
  if ((ipin.eq.1).and.(.not.gdomainfill)) then
Matthias Langer's avatar
   
Matthias Langer committed
406
407
408
409
410
411
412
413
414
    open(unitboundcond,file=path(2)(1:length(2))//'boundcond.bin', &
         form='unformatted')
    read(unitboundcond) numcolumn_we,numcolumn_sn, &
         zcolumn_we,zcolumn_sn,acc_mass_we,acc_mass_sn
    close(unitboundcond)
  endif


end subroutine init_domainfill