releaseparticles.f90 18.1 KB
Newer Older
Matthias Langer's avatar
 
Matthias Langer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine releaseparticles(itime)
  !                              o
  !*****************************************************************************
  !                                                                            *
  !     This subroutine releases particles from the release locations.         *
  !                                                                            *
  !     It searches for a "vacant" storage space and assigns all particle      *
  !     information to that space. A space is vacant either when no particle   *
  !     is yet assigned to it, or when it's particle is expired and, thus,     *
  !     the storage space is made available to a new particle.                 *
  !                                                                            *
  !     Author: A. Stohl                                                       *
  !                                                                            *
  !     29 June 2002                                                           *
  !                                                                            *
  !*****************************************************************************
  !                                                                            *
  ! Variables:                                                                 *
  ! itime [s]            current time                                          *
  ! ireleasestart, ireleaseend          start and end times of all releases    *
  ! npart(maxpoint)      number of particles to be released in total           *
  ! numrel               number of particles to be released during this time   *
  !                      step                                                  *
  !                                                                            *
  !*****************************************************************************

  use point_mod
  use xmass_mod
  use par_mod
  use com_mod
52
  use random_mod, only: ran1
Matthias Langer's avatar
 
Matthias Langer committed
53
54
55
56

  implicit none

  !real xaux,yaux,zaux,ran1,rfraction,xmasssave(maxpoint)
57
  real :: xaux,yaux,zaux,rfraction
Matthias Langer's avatar
 
Matthias Langer committed
58
  real :: topo,rhoaux(2),r,t,rhoout,ddx,ddy,rddx,rddy,p1,p2,p3,p4
59
  real :: rhosum(nspec)
Matthias Langer's avatar
 
Matthias Langer committed
60
61
62
63
64
65
66
67
68
69
70
71
72
  real :: dz1,dz2,dz,xtn,ytn,xlonav,timecorrect(maxspec),press,pressold
  real :: presspart,average_timecorrect
  integer :: itime,numrel,i,j,k,n,ix,jy,ixp,jyp,ipart,minpart,ii
  integer :: indz,indzp,kz,ngrid
  integer :: nweeks,ndayofweek,nhour,jjjjmmdd,ihmmss,mm
  real(kind=dp) :: juldate,julmonday,jul,jullocal,juldiff
  real,parameter :: eps=nxmax/3.e5,eps2=1.e-6

  integer :: idummy = -7
  !save idummy,xmasssave
  !data idummy/-7/,xmasssave/maxpoint*0./


73

Matthias Langer's avatar
 
Matthias Langer committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
  ! Determine the actual date and time in Greenwich (i.e., UTC + correction for daylight savings time)
  !*****************************************************************************

  julmonday=juldate(19000101,0)          ! this is a Monday
  jul=bdate+real(itime,kind=dp)/86400._dp    ! this is the current day
  call caldate(jul,jjjjmmdd,ihmmss)
  mm=(jjjjmmdd-10000*(jjjjmmdd/10000))/100
  if ((mm.ge.4).and.(mm.le.9)) jul=jul+1._dp/24._dp   ! daylight savings time in summer


  ! For every release point, check whether we are in the release time interval
  !***************************************************************************

  minpart=1
  do i=1,numpoint
89
90
91
    do k=1,nspec
      rhosum(k)=0
    end do
Matthias Langer's avatar
 
Matthias Langer committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    if ((itime.ge.ireleasestart(i)).and. &! are we within release interval?
         (itime.le.ireleaseend(i))) then

  ! Determine the local day and time
  !*********************************

      xlonav=xlon0+(xpoint2(i)+xpoint1(i))/2.*dx  ! longitude needed to determine local time
      if (xlonav.lt.-180.) xlonav=xlonav+360.
      if (xlonav.gt.180.) xlonav=xlonav-360.
      jullocal=jul+real(xlonav,kind=dp)/360._dp   ! correct approximately for time zone to obtain local time

      juldiff=jullocal-julmonday
      nweeks=int(juldiff/7._dp)
      juldiff=juldiff-real(nweeks,kind=dp)*7._dp
      ndayofweek=int(juldiff)+1              ! this is the current day of week, starting with Monday
      nhour=nint((juldiff-real(ndayofweek-1,kind=dp))*24._dp)    ! this is the current hour
      if (nhour.eq.0) then
        nhour=24
        ndayofweek=ndayofweek-1
        if (ndayofweek.eq.0) ndayofweek=7
      endif

  ! Calculate a species- and time-dependent correction factor, distinguishing between
  ! area (those with release starting at surface) and point (release starting above surface) sources
  ! Also, calculate an average time correction factor (species independent)
  !*****************************************************************************
      average_timecorrect=0.
      do k=1,nspec
        if (zpoint1(i).gt.0.5) then      ! point source
          timecorrect(k)=point_hour(k,nhour)*point_dow(k,ndayofweek)
        else                             ! area source
          timecorrect(k)=area_hour(k,nhour)*area_dow(k,ndayofweek)
        endif
        average_timecorrect=average_timecorrect+timecorrect(k)
      end do
      average_timecorrect=average_timecorrect/real(nspec)

  ! Determine number of particles to be released this time; at start and at end of release,
  ! only half the particles are released
  !*****************************************************************************

      if (ireleasestart(i).ne.ireleaseend(i)) then
        rfraction=abs(real(npart(i))*real(lsynctime)/ &
             real(ireleaseend(i)-ireleasestart(i)))
        if ((itime.eq.ireleasestart(i)).or. &
             (itime.eq.ireleaseend(i))) rfraction=rfraction/2.

  ! Take the species-average time correction factor in order to scale the
  ! number of particles released this time
  !**********************************************************************
        rfraction=rfraction*average_timecorrect

        rfraction=rfraction+xmasssave(i)  ! number to be released at this time
        numrel=int(rfraction)
        xmasssave(i)=rfraction-real(numrel)
      else
        numrel=npart(i)
      endif

      xaux=xpoint2(i)-xpoint1(i)
      yaux=ypoint2(i)-ypoint1(i)
      zaux=zpoint2(i)-zpoint1(i)
      do j=1,numrel                       ! loop over particles to be released this time
        do ipart=minpart,maxpart          ! search for free storage space

  ! If a free storage space is found, attribute everything to this array element
  !*****************************************************************************

          if (itra1(ipart).ne.itime) then

  ! Particle coordinates are determined by using a random position within the release volume
  !*****************************************************************************

  ! Determine horizontal particle position
  !***************************************

            xtra1(ipart)=xpoint1(i)+ran1(idummy)*xaux
            if (xglobal) then
              if (xtra1(ipart).gt.real(nxmin1)) xtra1(ipart)= &
                   xtra1(ipart)-real(nxmin1)
              if (xtra1(ipart).lt.0.) xtra1(ipart)= &
                   xtra1(ipart)+real(nxmin1)
            endif
            ytra1(ipart)=ypoint1(i)+ran1(idummy)*yaux

  ! Assign mass to particle: Total mass divided by total number of particles.
  ! Time variation has partly been taken into account already by a species-average
  ! correction factor, by which the number of particles released this time has been
  ! scaled. Adjust the mass per particle by the species-dependent time correction factor
  ! divided by the species-average one
182
183
  ! for the scavenging calculation the mass needs to be multiplied with rho of the particle layer and
  ! divided by the sum of rho of all particles.
Matthias Langer's avatar
 
Matthias Langer committed
184
185
186
187
  !*****************************************************************************
            do k=1,nspec
               xmass1(ipart,k)=xmass(i,k)/real(npart(i)) &
                    *timecorrect(k)/average_timecorrect
188
189
190
191
192
193
194
195
196
197
198
199
              if (SCAVDEP) then ! if there is no scavenging in wetdepo it will be set to 0
!              if ( henry(k).gt.0 .or. &
!                   crain_aero(k).gt.0. .or. csnow_aero(k).gt.0. .or. &
!                   ccn_aero(k).gt.0. .or. in_aero(k).gt.0. )  then
                xscav_frac1(ipart,k)=-1.
!               write(*,*) '190: ',xscav_frac1(ipart,k),k,ipart,rhosum(k),rhoout,i
!               xscav_frac1(ipart,k)=(-1.)/real(npart(i)) &
!                    *timecorrect(k)/average_timecorrect
!                  else
!                     xscav_frac1(ipart,k)=0
!                  endif   
               endif
Matthias Langer's avatar
 
Matthias Langer committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  ! Assign certain properties to particle
  !**************************************
            end do
            nclass(ipart)=min(int(ran1(idummy)*real(nclassunc))+1, &
                 nclassunc)
            numparticlecount=numparticlecount+1
            if (mquasilag.eq.0) then
              npoint(ipart)=i
            else
              npoint(ipart)=numparticlecount
            endif
            idt(ipart)=mintime               ! first time step
            itra1(ipart)=itime
            itramem(ipart)=itra1(ipart)
            itrasplit(ipart)=itra1(ipart)+ldirect*itsplit


  ! Determine vertical particle position
  !*************************************

            ztra1(ipart)=zpoint1(i)+ran1(idummy)*zaux

  ! Interpolation of topography and density
  !****************************************

  ! Determine the nest we are in
  !*****************************

            ngrid=0
            do k=numbnests,1,-1
              if ((xtra1(ipart).gt.xln(k)+eps).and. &
                   (xtra1(ipart).lt.xrn(k)-eps).and. &
                   (ytra1(ipart).gt.yln(k)+eps).and. &
                   (ytra1(ipart).lt.yrn(k)-eps)) then
                ngrid=k
                goto 43
              endif
            end do
43          continue

  ! Determine (nested) grid coordinates and auxiliary parameters used for interpolation
  !*****************************************************************************

            if (ngrid.gt.0) then
              xtn=(xtra1(ipart)-xln(ngrid))*xresoln(ngrid)
              ytn=(ytra1(ipart)-yln(ngrid))*yresoln(ngrid)
              ix=int(xtn)
              jy=int(ytn)
              ddy=ytn-real(jy)
              ddx=xtn-real(ix)
            else
              ix=int(xtra1(ipart))
              jy=int(ytra1(ipart))
              ddy=ytra1(ipart)-real(jy)
              ddx=xtra1(ipart)-real(ix)
            endif
            ixp=ix+1
            jyp=jy+1
            rddx=1.-ddx
            rddy=1.-ddy
            p1=rddx*rddy
            p2=ddx*rddy
            p3=rddx*ddy
            p4=ddx*ddy

            if (ngrid.gt.0) then
              topo=p1*oron(ix ,jy ,ngrid) &
                   + p2*oron(ixp,jy ,ngrid) &
                   + p3*oron(ix ,jyp,ngrid) &
                   + p4*oron(ixp,jyp,ngrid)
            else
              topo=p1*oro(ix ,jy) &
                   + p2*oro(ixp,jy) &
                   + p3*oro(ix ,jyp) &
                   + p4*oro(ixp,jyp)
            endif

  ! If starting height is in pressure coordinates, retrieve pressure profile and convert zpart1 to meters
  !*****************************************************************************
            if (kindz(i).eq.3) then
              presspart=ztra1(ipart)
              do kz=1,nz
                if (ngrid.gt.0) then
                  r=p1*rhon(ix ,jy ,kz,2,ngrid) &
                       +p2*rhon(ixp,jy ,kz,2,ngrid) &
                       +p3*rhon(ix ,jyp,kz,2,ngrid) &
                       +p4*rhon(ixp,jyp,kz,2,ngrid)
                  t=p1*ttn(ix ,jy ,kz,2,ngrid) &
                       +p2*ttn(ixp,jy ,kz,2,ngrid) &
                       +p3*ttn(ix ,jyp,kz,2,ngrid) &
                       +p4*ttn(ixp,jyp,kz,2,ngrid)
                else
                  r=p1*rho(ix ,jy ,kz,2) &
                       +p2*rho(ixp,jy ,kz,2) &
                       +p3*rho(ix ,jyp,kz,2) &
                       +p4*rho(ixp,jyp,kz,2)
                  t=p1*tt(ix ,jy ,kz,2) &
                       +p2*tt(ixp,jy ,kz,2) &
                       +p3*tt(ix ,jyp,kz,2) &
                       +p4*tt(ixp,jyp,kz,2)
                endif
                press=r*r_air*t/100.
                if (kz.eq.1) pressold=press

                if (press.lt.presspart) then
                  if (kz.eq.1) then
                    ztra1(ipart)=height(1)/2.
                  else
                    dz1=pressold-presspart
                    dz2=presspart-press
                    ztra1(ipart)=(height(kz-1)*dz2+height(kz)*dz1) &
                         /(dz1+dz2)
                  endif
                  goto 71
                endif
                pressold=press
              end do
71            continue
            endif

  ! If release positions are given in meters above sea level, subtract the
  ! topography from the starting height
  !***********************************************************************

            if (kindz(i).eq.2) ztra1(ipart)=ztra1(ipart)-topo
            if (ztra1(ipart).lt.eps2) ztra1(ipart)=eps2   ! Minimum starting height is eps2
            if (ztra1(ipart).gt.height(nz)-0.5) ztra1(ipart)= &
                 height(nz)-0.5 ! Maximum starting height is uppermost level - 0.5 meters



  ! For special simulations, multiply particle concentration air density;
  ! Simply take the 2nd field in memory to do this (accurate enough)
  !***********************************************************************
  !AF IND_SOURCE switches between different units for concentrations at the source
  !Af    NOTE that in backward simulations the release of particles takes place at the
  !Af         receptor and the sampling at the source.
  !Af          1="mass"
  !Af          2="mass mixing ratio"
  !Af IND_RECEPTOR switches between different units for concentrations at the receptor
  !Af          1="mass"
  !Af          2="mass mixing ratio"

  !Af switches for the releasefile:
  !Af IND_REL =  1 : xmass * rho
  !Af IND_REL =  0 : xmass * 1

  !Af ind_rel is defined in readcommand.f

            if (ind_rel .eq. 1) then

  ! Interpolate the air density
  !****************************

              do ii=2,nz
                if (height(ii).gt.ztra1(ipart)) then
                  indz=ii-1
                  indzp=ii
                  goto 6
                endif
              end do
6             continue

              dz1=ztra1(ipart)-height(indz)
              dz2=height(indzp)-ztra1(ipart)
              dz=1./(dz1+dz2)

              if (ngrid.gt.0) then
                do n=1,2
                  rhoaux(n)=p1*rhon(ix ,jy ,indz+n-1,2,ngrid) &
                       +p2*rhon(ixp,jy ,indz+n-1,2,ngrid) &
                       +p3*rhon(ix ,jyp,indz+n-1,2,ngrid) &
                       +p4*rhon(ixp,jyp,indz+n-1,2,ngrid)
                end do
              else
                do n=1,2
                  rhoaux(n)=p1*rho(ix ,jy ,indz+n-1,2) &
                       +p2*rho(ixp,jy ,indz+n-1,2) &
                       +p3*rho(ix ,jyp,indz+n-1,2) &
                       +p4*rho(ixp,jyp,indz+n-1,2)
                end do
              endif
              rhoout=(dz2*rhoaux(1)+dz1*rhoaux(2))*dz
              rho_rel(i)=rhoout


  ! Multiply "mass" (i.e., mass mixing ratio in forward runs) with density
  !********************************************************************

              do k=1,nspec
                xmass1(ipart,k)=xmass1(ipart,k)*rhoout
391
392
393
394
395
396
                if (SCAVDEP) then
                     xscav_frac1(ipart,k)=xscav_frac1(ipart,k)
!mctest                     xscav_frac1(ipart,k)=xscav_frac1(ipart,k)*rhoout
                     rhosum(k)=rhosum(k)+rhoout
!               write(*,*) '391: ',xscav_frac1(ipart,k),k,ipart,rhosum(k),rhoout,i
                endif
Matthias Langer's avatar
 
Matthias Langer committed
397
398
399
400
401
402
403
              end do
            endif


            numpart=max(numpart,ipart)
            goto 34      ! Storage space has been found, stop searching
          endif
404
        end do  ! i=1:numpoint
Matthias Langer's avatar
 
Matthias Langer committed
405
406
407
        if (ipart.gt.maxpart) goto 996

34      minpart=ipart+1
408
409
410
411
412
413
414
415
416
417
      end do ! ipart=minpart,maxpart
      if (SCAVDEP) then
         do ipart=minpart,maxpart
            do k=1,nspec
              if (xscav_frac1(ipart,k).lt.0) then
!mctest                   xscav_frac1(ipart,k)=xscav_frac1(ipart,k)/rhosum(k)
!                 write(*,*) '409: ',xscav_frac1(ipart,k),k,ipart,rhosum(k),rhoout,i
               endif   
            end do
         end do
Matthias Langer's avatar
 
Matthias Langer committed
418
      endif
419
      endif ! j=1,numrel
Matthias Langer's avatar
 
Matthias Langer committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
  end do


  return

996   continue
  write(*,*) '#####################################################'
  write(*,*) '#### FLEXPART MODEL SUBROUTINE RELEASEPARTICLES: ####'
  write(*,*) '####                                             ####'
  write(*,*) '#### ERROR - TOTAL NUMBER OF PARTICLES REQUIRED  ####'
  write(*,*) '#### EXCEEDS THE MAXIMUM ALLOWED NUMBER. REDUCE  ####'
  write(*,*) '#### EITHER NUMBER OF PARTICLES PER RELEASE POINT####'
  write(*,*) '#### OR REDUCE NUMBER OF RELEASE POINTS.         ####'
  write(*,*) '#####################################################'
  stop

end subroutine releaseparticles