concoutput_surf.f90 23.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine concoutput_surf(itime,outnum,gridtotalunc,wetgridtotalunc, &
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
     drygridtotalunc)
!                        i     i          o             o
!       o
!*****************************************************************************
!                                                                            *
!     Output of the concentration grid and the receptor concentrations.      *
!                                                                            *
!     Author: A. Stohl                                                       *
!                                                                            *
!     24 May 1995                                                            *
!                                                                            *
!     13 April 1999, Major update: if output size is smaller, dump output    *
!                    in sparse matrix format; additional output of           *
!                    uncertainty                                             *
!                                                                            *
!     05 April 2000, Major update: output of age classes; output for backward*
!                    runs is time spent in grid cell times total mass of     *
!                    species.                                                *
!                                                                            *
!     17 February 2002, Appropriate dimensions for backward and forward runs *
!                       are now specified in file par_mod                    *
!                                                                            *
!     June 2006, write grid in sparse matrix with a single write command     *
!                in order to save disk space                                 *
!                                                                            *
!     2008 new sparse matrix format                                          *
!                                                                            *
!*****************************************************************************
!                                                                            *
! Variables:                                                                 *
! outnum          number of samples                                          *
! ncells          number of cells with non-zero concentrations               *
! sparse          .true. if in sparse matrix format, else .false.            *
! tot_mu          1 for forward, initial mass mixing ration for backw. runs  *
!                                                                            *
!*****************************************************************************
59
60
61
62
63
64

  use unc_mod
  use point_mod
  use outg_mod
  use par_mod
  use com_mod
65
  use mean_mod
66
67
68
69
70
71
72
73
74

  implicit none

  real(kind=dp) :: jul
  integer :: itime,i,ix,jy,kz,ks,kp,l,iix,jjy,kzz,nage,jjjjmmdd,ihmmss
  integer :: sp_count_i,sp_count_r
  real :: sp_fact
  real :: outnum,densityoutrecept(maxreceptor),xl,yl

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
!real densityoutgrid(0:numxgrid-1,0:numygrid-1,numzgrid),
!    +grid(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,maxpointspec_act,
!    +    maxageclass)
!real wetgrid(0:numxgrid-1,0:numygrid-1,maxspec,maxpointspec_act,
!    +       maxageclass)
!real drygrid(0:numxgrid-1,0:numygrid-1,maxspec,
!    +       maxpointspec_act,maxageclass)
!real gridsigma(0:numxgrid-1,0:numygrid-1,numzgrid,maxspec,
!    +       maxpointspec_act,maxageclass),
!    +     drygridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
!    +     maxpointspec_act,maxageclass),
!    +     wetgridsigma(0:numxgrid-1,0:numygrid-1,maxspec,
!    +     maxpointspec_act,maxageclass)
!real factor(0:numxgrid-1,0:numygrid-1,numzgrid)
!real sparse_dump_r(numxgrid*numygrid*numzgrid)
!integer sparse_dump_i(numxgrid*numygrid*numzgrid)

!real sparse_dump_u(numxgrid*numygrid*numzgrid)
93
94
95
96
  real(dep_prec) :: auxgrid(nclassunc)
  real(sp) :: gridtotal,gridsigmatotal,gridtotalunc
  real(dep_prec) :: wetgridtotal,wetgridsigmatotal,wetgridtotalunc
  real(dep_prec) :: drygridtotal,drygridsigmatotal,drygridtotalunc
97
98
99
100
101
102
103
104
105
  real :: halfheight,dz,dz1,dz2,tot_mu(maxspec,maxpointspec_act)
  real,parameter :: smallnum = tiny(0.0) ! smallest number that can be handled
  real,parameter :: weightair=28.97
  logical :: sp_zer
  character :: adate*8,atime*6
  character(len=3) :: anspec


  if (verbosity.eq.1) then
106
107
108
    print*,'inside concoutput_surf '
    CALL SYSTEM_CLOCK(count_clock)
    WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
109
110
  endif

111
112
! Determine current calendar date, needed for the file name
!**********************************************************
113
114
115
116
117

  jul=bdate+real(itime,kind=dp)/86400._dp
  call caldate(jul,jjjjmmdd,ihmmss)
  write(adate,'(i8.8)') jjjjmmdd
  write(atime,'(i6.6)') ihmmss
118
!write(unitdates,'(a)') adate//atime
119

120
121
122
  open(unitdates,file=path(2)(1:length(2))//'dates', ACCESS='APPEND')
  write(unitdates,'(a)') adate//atime
  close(unitdates)
123

124
125
126
127
! For forward simulations, output fields have dimension MAXSPEC,
! for backward simulations, output fields have dimension MAXPOINT.
! Thus, make loops either about nspec, or about numpoint
!*****************************************************************
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


  if (ldirect.eq.1) then
    do ks=1,nspec
      do kp=1,maxpointspec_act
        tot_mu(ks,kp)=1
      end do
    end do
  else
    do ks=1,nspec
      do kp=1,maxpointspec_act
        tot_mu(ks,kp)=xmass(kp,ks)
      end do
    end do
  endif


  if (verbosity.eq.1) then
146
147
148
    print*,'concoutput_surf 2'
    CALL SYSTEM_CLOCK(count_clock)
    WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
149
150
  endif

151
152
153
154
155
156
!*******************************************************************
! Compute air density: sufficiently accurate to take it
! from coarse grid at some time
! Determine center altitude of output layer, and interpolate density
! data to that altitude
!*******************************************************************
157
158
159
160
161
162
163
164
165
166
167

  do kz=1,numzgrid
    if (kz.eq.1) then
      halfheight=outheight(1)/2.
    else
      halfheight=(outheight(kz)+outheight(kz-1))/2.
    endif
    do kzz=2,nz
      if ((height(kzz-1).lt.halfheight).and. &
           (height(kzz).gt.halfheight)) goto 46
    end do
168
46  kzz=max(min(kzz,nz),2)
169
170
171
172
173
174
175
176
    dz1=halfheight-height(kzz-1)
    dz2=height(kzz)-halfheight
    dz=dz1+dz2
    do jy=0,numygrid-1
      do ix=0,numxgrid-1
        xl=outlon0+real(ix)*dxout
        yl=outlat0+real(jy)*dyout
        xl=(xl-xlon0)/dx
177
        yl=(yl-ylat0)/dy
178
179
180
181
182
183
184
185
        iix=max(min(nint(xl),nxmin1),0)
        jjy=max(min(nint(yl),nymin1),0)
        densityoutgrid(ix,jy,kz)=(rho(iix,jjy,kzz,2)*dz1+ &
             rho(iix,jjy,kzz-1,2)*dz2)/dz
      end do
    end do
  end do

186
187
188
189
190
191
192
  do i=1,numreceptor
    xl=xreceptor(i)
    yl=yreceptor(i)
    iix=max(min(nint(xl),nxmin1),0)
    jjy=max(min(nint(yl),nymin1),0)
    densityoutrecept(i)=rho(iix,jjy,1,2)
  end do
193
194


195
196
197
198
199
200
201
202
203
! Output is different for forward and backward simulations
  do kz=1,numzgrid
    do jy=0,numygrid-1
      do ix=0,numxgrid-1
        if (ldirect.eq.1) then
          factor3d(ix,jy,kz)=1.e12/volume(ix,jy,kz)/outnum
        else
          factor3d(ix,jy,kz)=real(abs(loutaver))/outnum
        endif
204
205
      end do
    end do
206
  end do
207

208
209
210
211
!*********************************************************************
! Determine the standard deviation of the mean concentration or mixing
! ratio (uncertainty of the output) and the dry and wet deposition
!*********************************************************************
212
213

  if (verbosity.eq.1) then
214
215
216
    print*,'concoutput_surf 3 (sd)'
    CALL SYSTEM_CLOCK(count_clock)
    WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
217
218
219
220
221
222
223
224
225
226
227
228
229
  endif
  gridtotal=0.
  gridsigmatotal=0.
  gridtotalunc=0.
  wetgridtotal=0.
  wetgridsigmatotal=0.
  wetgridtotalunc=0.
  drygridtotal=0.
  drygridsigmatotal=0.
  drygridtotalunc=0.

  do ks=1,nspec

230
231
232
233
234
235
236
237
238
239
    write(anspec,'(i3.3)') ks
    if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then
      if (ldirect.eq.1) then
        open(unitoutgrid,file=path(2)(1:length(2))//'grid_conc_'//adate// &
             atime//'_'//anspec,form='unformatted')
      else
        open(unitoutgrid,file=path(2)(1:length(2))//'grid_time_'//adate// &
             atime//'_'//anspec,form='unformatted')
      endif
      write(unitoutgrid) itime
240
241
    endif

242
243
244
    if ((iout.eq.2).or.(iout.eq.3)) then      ! mixing ratio
      open(unitoutgridppt,file=path(2)(1:length(2))//'grid_pptv_'//adate// &
           atime//'_'//anspec,form='unformatted')
245

246
247
      write(unitoutgridppt) itime
    endif
248

249
250
    do kp=1,maxpointspec_act
      do nage=1,nageclass
251

252
253
        do jy=0,numygrid-1
          do ix=0,numxgrid-1
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
! WET DEPOSITION
            if ((WETDEP).and.(ldirect.gt.0)) then
              do l=1,nclassunc
                auxgrid(l)=wetgridunc(ix,jy,ks,kp,l,nage)
              end do
              call mean(auxgrid,wetgrid(ix,jy), &
                   wetgridsigma(ix,jy),nclassunc)
! Multiply by number of classes to get total concentration
              wetgrid(ix,jy)=wetgrid(ix,jy) &
                   *nclassunc
              wetgridtotal=wetgridtotal+wetgrid(ix,jy)
! Calculate standard deviation of the mean
              wetgridsigma(ix,jy)= &
                   wetgridsigma(ix,jy)* &
                   sqrt(real(nclassunc))
              wetgridsigmatotal=wetgridsigmatotal+ &
                   wetgridsigma(ix,jy)
            endif

! DRY DEPOSITION
            if ((DRYDEP).and.(ldirect.gt.0)) then
              do l=1,nclassunc
                auxgrid(l)=drygridunc(ix,jy,ks,kp,l,nage)
              end do
              call mean(auxgrid,drygrid(ix,jy), &
                   drygridsigma(ix,jy),nclassunc)
! Multiply by number of classes to get total concentration
              drygrid(ix,jy)=drygrid(ix,jy)* &
                   nclassunc
              drygridtotal=drygridtotal+drygrid(ix,jy)
! Calculate standard deviation of the mean
              drygridsigma(ix,jy)= &
                   drygridsigma(ix,jy)* &
                   sqrt(real(nclassunc))
125           drygridsigmatotal=drygridsigmatotal+ &
                   drygridsigma(ix,jy)
            endif

! CONCENTRATION OR MIXING RATIO
            do kz=1,numzgrid
              do l=1,nclassunc
                auxgrid(l)=gridunc(ix,jy,kz,ks,kp,l,nage)
              end do
              call mean(auxgrid,grid(ix,jy,kz), &
                   gridsigma(ix,jy,kz),nclassunc)
! Multiply by number of classes to get total concentration
              grid(ix,jy,kz)= &
                   grid(ix,jy,kz)*nclassunc
              gridtotal=gridtotal+grid(ix,jy,kz)
! Calculate standard deviation of the mean
              gridsigma(ix,jy,kz)= &
                   gridsigma(ix,jy,kz)* &
                   sqrt(real(nclassunc))
              gridsigmatotal=gridsigmatotal+ &
                   gridsigma(ix,jy,kz)
310
            end do
311
          end do
312
313
314
        end do


315
316
317
318
319
320
321
!*******************************************************************
! Generate output: may be in concentration (ng/m3) or in mixing
! ratio (ppt) or both
! Output the position and the values alternated multiplied by
! 1 or -1, first line is number of values, number of positions
! For backward simulations, the unit is seconds, stored in grid_time
!*******************************************************************
322

323
324
325
326
327
        if (verbosity.eq.1) then
          print*,'concoutput_surf 4 (output)'
          CALL SYSTEM_CLOCK(count_clock)
          WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
        endif
328

329
330
! Concentration output
!*********************
331

332
        if ((iout.eq.1).or.(iout.eq.3).or.(iout.eq.5)) then
333

334
335
336
337
338
          if (verbosity.eq.1) then
            print*,'concoutput_surf (Wet deposition)'
            CALL SYSTEM_CLOCK(count_clock)
            WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
          endif
339

340
341
342
343
344
345
346
347
348
349
350
! Wet deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(WETDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
! concentraion greater zero
                if (wetgrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
351
352
353
354
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)=ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
355
356
357
358
359
360
361
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact*1.e12*wetgrid(ix,jy)/area(ix,jy)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*wetgridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
362
                  sp_zer=.true.
363
364
                endif
              end do
365
            end do
366
          else
367
368
            sp_count_i=0
            sp_count_r=0
369
370
371
372
373
          endif
          write(unitoutgrid) sp_count_i
          write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgrid) sp_count_r
          write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
374
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
          if (verbosity.eq.1) then
            print*,'concoutput_surf (Dry deposition)'
            CALL SYSTEM_CLOCK(count_clock)
            WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
          endif
! Dry deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(DRYDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
                if (drygrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
391
392
393
394
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)=ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
395
396
397
398
399
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*drygrid(ix,jy)/area(ix,jy)
400
                  sparse_dump_u(sp_count_r)= &
401
402
                       1.e12*drygridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
403
                  sp_zer=.true.
404
405
                endif
              end do
406
            end do
407
          else
408
409
            sp_count_i=0
            sp_count_r=0
410
411
412
413
414
          endif
          write(unitoutgrid) sp_count_i
          write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgrid) sp_count_r
          write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
415
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
416

417
418
419
420
421
          if (verbosity.eq.1) then
            print*,'concoutput_surf (Concentrations)'
            CALL SYSTEM_CLOCK(count_clock)
            WRITE(*,*) 'SYSTEM_CLOCK',count_clock - count_clock0   
          endif
422

423
! Concentrations
424

425
! surf_only write only 1st layer 
426

427
428
429
430
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
431
432
433
434
435
436
437
438
439
440
          do kz=1,1
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid+kz*numxgrid*numygrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
441
                  endif
442
443
444
445
446
447
448
449
450
451
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       grid(ix,jy,kz)* &
                       factor3d(ix,jy,kz)/tot_mu(ks,kp)
!                 if ((factor(ix,jy,kz)/tot_mu(ks,kp)).eq.0)
!    +              write (*,*) factor(ix,jy,kz),tot_mu(ks,kp),ks,kp
                  sparse_dump_u(sp_count_r)= &
                       gridsigma(ix,jy,kz)* &
                       factor3d(ix,jy,kz)/tot_mu(ks,kp)
452
                else ! concentration is zero
453
                  sp_zer=.true.
454
                endif
455
456
457
458
459
460
461
              end do
            end do
          end do
          write(unitoutgrid) sp_count_i
          write(unitoutgrid) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgrid) sp_count_r
          write(unitoutgrid) (sparse_dump_r(i),i=1,sp_count_r)
462
!         write(unitoutgrid) (sparse_dump_u(i),i=1,sp_count_r)
463

464
        endif !  concentration output
465

466
467
! Mixing ratio output
!********************
468

469
        if ((iout.eq.2).or.(iout.eq.3)) then      ! mixing ratio
470

471
472
473
474
475
476
477
478
! Wet deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(WETDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
479
480
481
482
483
484
485
                if (wetgrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
486
487
488
489
490
491
492
493
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*wetgrid(ix,jy)/area(ix,jy)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*wetgridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
494
                  sp_zer=.true.
495
496
                endif
              end do
497
            end do
498
499
500
501
502
503
504
505
          else
            sp_count_i=0
            sp_count_r=0
          endif
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
506
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
507
508


509
510
511
512
513
514
515
516
! Dry deposition
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
          if ((ldirect.eq.1).and.(DRYDEP)) then
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
517
518
519
520
521
522
523
                if (drygrid(ix,jy).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1)
524
525
526
527
528
529
530
531
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*drygrid(ix,jy)/area(ix,jy)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*drygridsigma(ix,jy)/area(ix,jy)
                else ! concentration is zero
532
                  sp_zer=.true.
533
534
                endif
              end do
535
            end do
536
537
538
539
540
541
542
543
          else
            sp_count_i=0
            sp_count_r=0
          endif
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
544
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
545
546


547
! Mixing ratios
548

549
! surf_only write only 1st layer 
550

551
552
553
554
          sp_count_i=0
          sp_count_r=0
          sp_fact=-1.
          sp_zer=.true.
555
556
557
558
559
560
561
562
563
564
          do kz=1,1
            do jy=0,numygrid-1
              do ix=0,numxgrid-1
                if (grid(ix,jy,kz).gt.smallnum) then
                  if (sp_zer.eqv..true.) then ! first non zero value
                    sp_count_i=sp_count_i+1
                    sparse_dump_i(sp_count_i)= &
                         ix+jy*numxgrid+kz*numxgrid*numygrid
                    sp_zer=.false.
                    sp_fact=sp_fact*(-1.)
565
566
567
568
569
570
571
572
573
574
575
576
                  endif
                  sp_count_r=sp_count_r+1
                  sparse_dump_r(sp_count_r)= &
                       sp_fact* &
                       1.e12*grid(ix,jy,kz) &
                       /volume(ix,jy,kz)/outnum* &
                       weightair/weightmolar(ks)/densityoutgrid(ix,jy,kz)
                  sparse_dump_u(sp_count_r)= &
                       1.e12*gridsigma(ix,jy,kz)/volume(ix,jy,kz)/ &
                       outnum*weightair/weightmolar(ks)/ &
                       densityoutgrid(ix,jy,kz)
                else ! concentration is zero
577
                  sp_zer=.true.
578
                endif
579
580
581
              end do
            end do
          end do
582
583
584
585
          write(unitoutgridppt) sp_count_i
          write(unitoutgridppt) (sparse_dump_i(i),i=1,sp_count_i)
          write(unitoutgridppt) sp_count_r
          write(unitoutgridppt) (sparse_dump_r(i),i=1,sp_count_r)
586
!         write(unitoutgridppt) (sparse_dump_u(i),i=1,sp_count_r)
587

588
        endif ! output for ppt
589

590
591
      end do
    end do
592
593
594
595
596
597
598
599
600
601
602
603

    close(unitoutgridppt)
    close(unitoutgrid)

  end do

  if (gridtotal.gt.0.) gridtotalunc=gridsigmatotal/gridtotal
  if (wetgridtotal.gt.0.) wetgridtotalunc=wetgridsigmatotal/ &
       wetgridtotal
  if (drygridtotal.gt.0.) drygridtotalunc=drygridsigmatotal/ &
       drygridtotal

604
! Dump of receptor concentrations
605

606
607
608
609
610
611
612
  if (numreceptor.gt.0 .and. (iout.eq.2 .or. iout.eq.3)  ) then
    write(unitoutreceptppt) itime
    do ks=1,nspec
      write(unitoutreceptppt) (1.e12*creceptor(i,ks)/outnum* &
           weightair/weightmolar(ks)/densityoutrecept(i),i=1,numreceptor)
    end do
  endif
613

614
! Dump of receptor concentrations
615

616
617
618
619
620
621
622
  if (numreceptor.gt.0) then
    write(unitoutrecept) itime
    do ks=1,nspec
      write(unitoutrecept) (1.e12*creceptor(i,ks)/outnum, &
           i=1,numreceptor)
    end do
  endif
623
624
625



626
627
! Reinitialization of grid
!*************************
628
629

  do ks=1,nspec
630
631
632
633
634
635
636
637
638
639
640
    do kp=1,maxpointspec_act
      do i=1,numreceptor
        creceptor(i,ks)=0.
      end do
      do jy=0,numygrid-1
        do ix=0,numxgrid-1
          do l=1,nclassunc
            do nage=1,nageclass
              do kz=1,numzgrid
                gridunc(ix,jy,kz,ks,kp,l,nage)=0.
              end do
641
642
643
644
645
646
647
648
649
            end do
          end do
        end do
      end do
    end do
  end do


end subroutine concoutput_surf