timemanager_mpi.f90 32.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine timemanager

!*****************************************************************************
!                                                                            *
! Handles the computation of trajectories, i.e. determines which             *
! trajectories have to be computed at what time.                             *
! Manages dry+wet deposition routines, radioactive decay and the computation *
! of concentrations.                                                         *
!                                                                            *
!     Author: A. Stohl                                                       *
!                                                                            *
!     20 May 1996                                                            *
!                                                                            *
!*****************************************************************************
!  Changes, Bernd C. Krueger, Feb. 2001:                                     *
!        Call of convmix when new windfield is read                          *
!------------------------------------                                        *
!  Changes Petra Seibert, Sept 2002                                          *
!     fix wet scavenging problem                                             *
!     Code may not be correct for decay of deposition!                       *
!  Changes Petra Seibert, Nov 2002                                           *
!     call convection BEFORE new fields are read in BWD mode                 *
!  Changes Caroline Forster, Feb 2005                                        *
!   new interface between flexpart and convection scheme                     *
!   Emanuel's latest subroutine convect43c.f is used                         *
!  Changes Stefan Henne, Harald Sodemann, 2013-2014                          *
!   added netcdf output code                                                 *
!  Changes Espen Sollum 2014                                                 *
!   MPI version                                                              *
!   Variables uap,ucp,uzp,us,vs,ws,cbt now in module com_mod                 *
!*****************************************************************************
!                                                                            *
! Variables:                                                                 *
! dep                .true. if either wet or dry deposition is switched on   *
! decay(maxspec) [1/s] decay constant for radioactive decay                  *
! drydep             .true. if dry deposition is switched on                 *
! ideltas [s]        modelling period                                        *
! itime [s]          actual temporal position of calculation                 *
! ldeltat [s]        time since computation of radioact. decay of depositions*
! loutaver [s]       averaging period for concentration calculations         *
! loutend [s]        end of averaging for concentration calculations         *
! loutnext [s]       next time at which output fields shall be centered      *
! loutsample [s]     sampling interval for averaging of concentrations       *
! loutstart [s]      start of averaging for concentration calculations       *
! loutstep [s]       time interval for which concentrations shall be         *
!                    calculated                                              *
! npoint(maxpart)    index, which starting point the trajectory has          *
!                    starting positions of trajectories                      *
! nstop              serves as indicator for fate of particles               *
!                    in the particle loop                                    *
! nstop1             serves as indicator for wind fields (see getfields)     *
! memstat            additional indicator for wind fields (see getfields)    *
! outnum             number of samples for each concentration calculation    *
! prob               probability of absorption at ground due to dry          *
!                    deposition                                              *
! wetdep             .true. if wet deposition is switched on                 *
! weight             weight for each concentration sample (1/2 or 1)         *
! uap(maxpart),ucp(maxpart),uzp(maxpart) = random velocities due to          *
!                    turbulence                                              *
! us(maxpart),vs(maxpart),ws(maxpart) = random velocities due to inter-      *
!                    polation                                                *
! xtra1(maxpart), ytra1(maxpart), ztra1(maxpart) =                           *
!                    spatial positions of trajectories                       *
!                                                                            *
! Constants:                                                                 *
! maxpart            maximum number of trajectories                          *
!                                                                            *
!*****************************************************************************

  use unc_mod
  use point_mod
  use xmass_mod
  use flux_mod
  use outg_mod
  use oh_mod
  use par_mod
  use com_mod
  use mpi_mod
  use netcdf_output_mod, only: concoutput_netcdf,concoutput_nest_netcdf,&
       &concoutput_surf_netcdf,concoutput_surf_nest_netcdf

  implicit none

  logical :: reqv_state=.false. ! .true. if waiting for a MPI_Irecv to complete
106
  integer :: j,ks,kp,l,n,itime=0,nstop,nstop1,memstat=0 !,mind
107
108
109
110
111
! integer :: ksp
  integer :: ip
  integer :: loutnext,loutstart,loutend
  integer :: ix,jy,ldeltat,itage,nage
  integer :: i_nan=0,ii_nan,total_nan_intl=0  !added by mc to check instability in CBL scheme 
112
  integer :: numpart_tot_mpi ! for summing particles on all processes
113
114
115
  real :: outnum,weight,prob(maxspec)
  real :: decfact

116
  real(sp) :: gridtotalunc
117
118
  real(dep_prec) :: drygridtotalunc=0_dep_prec,wetgridtotalunc=0_dep_prec,&
       & drydeposit(maxspec)=0_dep_prec
119
  real :: xold,yold,zold,xmassfract
120
  real, parameter :: e_inv = 1.0/exp(1.0)
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

! Measure time spent in timemanager
  if (mp_measure_time) call mpif_mtime('timemanager',0)

! First output for time 0
!************************

  loutnext=loutstep/2
  outnum=0.
  loutstart=loutnext-loutaver/2
  loutend=loutnext+loutaver/2


!**********************************************************************
! Loop over the whole modelling period in time steps of mintime seconds
!**********************************************************************

138

139
  if (lroot.or.mp_dev_mode) then
140
141
  !  write(*,45) itime,numpart*mp_partgroup_np,gridtotalunc,wetgridtotalunc,drygridtotalunc
    write(*,46) float(itime)/3600,itime,numpart*mp_partgroup_np
142
143
144
145
146
147
148
    
    if (verbosity.gt.0) then
      write (*,*) 'timemanager> starting simulation'
    end if
  end if ! (lroot)

!CGZ-lifetime: set lifetime to 0
149
150
151
  ! checklifetime(:,:)=0
  ! species_lifetime(:,:)=0
  ! print*, 'Initialized lifetime'
152
153
154
155
!CGZ-lifetime: set lifetime to 0



156
157
158
159
160
161
162
163
164
165
166
167
168
169
  do itime=0,ideltas,lsynctime

! Computation of wet deposition, OH reaction and mass transfer
! between two species every lsynctime seconds
! maybe wet depo frequency can be relaxed later but better be on safe side
! wetdepo must be called BEFORE new fields are read in but should not
! be called in the very beginning before any fields are loaded, or
! before particles are in the system
! Code may not be correct for decay of deposition
! changed by Petra Seibert 9/02
!********************************************************************

    if (mp_dev_mode) write(*,*) 'myid, itime: ',mp_pid,itime
    
170
    if (WETDEP .and. itime .ne. 0 .and. numpart .gt. 0) then
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
      if (verbosity.gt.0) then
        write (*,*) 'timemanager> call wetdepo'
      endif

      if (mp_measure_time) call mpif_mtime('wetdepo',0)
        
! readwind process skips this step
      if (.not.(lmpreader.and.lmp_use_reader)) then
        call wetdepo(itime,lsynctime,loutnext)
      end if

      if (mp_measure_time) call mpif_mtime('wetdepo',1)
    end if

    if (OHREA .and. itime .ne. 0 .and. numpart .gt. 0) then
! readwind process skips this step
Espen Sollum's avatar
Espen Sollum committed
187
      if (.not.(lmpreader.and.lmp_use_reader)) then
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        call ohreaction(itime,lsynctime,loutnext)
      endif
    end if

    if (assspec .and. itime .ne. 0 .and. numpart .gt. 0) then
      stop 'associated species not yet implemented!'
!     call transferspec(itime,lsynctime,loutnext)
    endif


! compute convection for backward runs
!*************************************

    if ((ldirect.eq.-1).and.(lconvection.eq.1).and.(itime.lt.0)) then
      if (verbosity.gt.0) then
        write (*,*) 'timemanager> call convmix -- backward'
      endif
! readwind process skips this step
      if (.not.(lmpreader.and.lmp_use_reader)) call convmix(itime)
    endif

! Get necessary wind fields if not available
!*******************************************
    if (verbosity.gt.0 .and. lmpreader) then
      write (*,*) 'timemanager> call getfields'
    endif

215
216
! This time measure includes reading/MPI communication (for the reader process),
! or MPI communication time only (for other processes)
217
218
219
220
221
222
    if (mp_measure_time) call mpif_mtime('getfields',0)

    call getfields(itime,nstop1,memstat)

    if (mp_measure_time) call mpif_mtime('getfields',1)

223

224
225
226
227
! Broadcast fields to all MPI processes 
! Skip if all processes have called getfields or if no new fields
!*****************************************************************

228
229
    if (mp_measure_time.and..not.(lmpreader.and.lmp_use_reader)) call mpif_mtime('getfields',0)

Espen Sollum's avatar
Espen Sollum committed
230
! Two approaches to MPI getfields is implemented:
231
232
! Version 1 (lmp_sync=.true.) uses a read-ahead process where send/recv is done
! in sync at start of each new field time interval
Espen Sollum's avatar
Espen Sollum committed
233
234
235
236
237
238
!
! Version 2 (lmp_sync=.false.) is for holding three fields in memory. Uses a
! read-ahead process where sending/receiving of the 3rd fields is done in
! the background in parallel with performing computations with fields 1&2
!********************************************************************************

239
240
    if (lmp_sync.and.lmp_use_reader.and.memstat.gt.0) then
      call mpif_gf_send_vars(memstat)
241
      if (numbnests>0) call mpif_gf_send_vars_nest(memstat)
Espen Sollum's avatar
Espen Sollum committed
242
! Version 2  (lmp_sync=.false.) is also used whenever 2 new fields are
243
! read (as at first time step), in which case async send/recv is impossible.
244
245
    else if (.not.lmp_sync.and.lmp_use_reader.and.memstat.ge.32) then
      call mpif_gf_send_vars(memstat)
246
      if (numbnests>0) call mpif_gf_send_vars_nest(memstat)
247
248
249
250
    end if

    if (.not.lmp_sync) then
    
Espen Sollum's avatar
Espen Sollum committed
251
! Reader process:
252
      if (memstat.gt.0..and.memstat.lt.32.and.lmp_use_reader.and.lmpreader) then
253
        if (mp_dev_mode) write(*,*) 'Reader process: calling mpif_gf_send_vars_async' 
254
        call mpif_gf_send_vars_async(memstat)
255
        if (numbnests>0) call mpif_gf_send_vars_nest_async(memstat)
256
257
      end if

Espen Sollum's avatar
Espen Sollum committed
258
! Completion check:
259
260
! Issued at start of each new field period. 
      if (memstat.ne.0.and.memstat.lt.32.and.lmp_use_reader) then
Espen Sollum's avatar
Espen Sollum committed
261
        call mpif_gf_request
262
263
      end if

Espen Sollum's avatar
Espen Sollum committed
264
265
266
! Recveiving process(es):
! eso TODO: at this point we do not know if clwc/ciwc will be available
! at next time step. Issue receive request anyway, cancel at mpif_gf_request
267
      if (memstat.gt.0.and.lmp_use_reader.and..not.lmpreader) then
268
        if (mp_dev_mode) write(*,*) 'Receiving process: calling mpif_gf_send_vars_async. PID: ', mp_pid
269
        call mpif_gf_recv_vars_async(memstat)
270
        if (numbnests>0) call mpif_gf_recv_vars_nest_async(memstat)
271
272
273
274
      end if

    end if

275
276
    if (mp_measure_time.and..not.(lmpreader.and.lmp_use_reader)) call mpif_mtime('getfields',1)

277
278
279
280
281
282
    if (lmpreader.and.nstop1.gt.1) stop 'NO METEO FIELDS AVAILABLE'

! Reader process goes back to top of time loop (unless simulation end)
!*********************************************************************

    if (lmpreader.and.lmp_use_reader) then
283
      if (itime.lt.ideltas*ldirect) then
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        cycle
      else
        goto 999
      end if
    end if


! Get hourly OH fields if not available 
!****************************************************
    if (OHREA) then
      if (verbosity.gt.0) then
        write (*,*) 'timemanager> call gethourlyOH'
      endif
      call gethourlyOH(itime)
    endif


! Release particles
!******************

    if (verbosity.gt.0.and.lroot) then
      write (*,*) 'timemanager>  Release particles'
    endif

    if (mdomainfill.ge.1) then
      if (itime.eq.0) then
        if (verbosity.gt.0) then
          write (*,*) 'timemanager>  call init_domainfill'
        endif
        call init_domainfill
      else
        if (verbosity.gt.0.and.lroot) then
          write (*,*) 'timemanager>  call boundcond_domainfill'
        endif
        call boundcond_domainfill(itime,loutend)
      endif
    else
      if (verbosity.gt.0.and.lroot) then
        print*,'call releaseparticles'  
      endif
      call releaseparticles(itime)
    endif


! Compute convective mixing for forward runs
! for backward runs it is done before next windfield is read in
!**************************************************************

    if ((ldirect.eq.1).and.(lconvection.eq.1)) then
      if (verbosity.gt.0) then
        write (*,*) 'timemanager> call convmix -- forward'
      endif
      call convmix(itime)
    endif

! If middle of averaging period of output fields is reached, accumulated
! deposited mass radioactively decays
!***********************************************************************

    if (DEP.and.(itime.eq.loutnext).and.(ldirect.gt.0)) then
      do ks=1,nspec
        do kp=1,maxpointspec_act
346
          if (decay(ks).gt.0.) then ! TODO move this statement up 2 levels
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            do nage=1,nageclass
              do l=1,nclassunc
! Mother output grid
                do jy=0,numygrid-1
                  do ix=0,numxgrid-1
                    wetgridunc(ix,jy,ks,kp,l,nage)= &
                         wetgridunc(ix,jy,ks,kp,l,nage)* &
                         exp(-1.*outstep*decay(ks))
                    drygridunc(ix,jy,ks,kp,l,nage)= &
                         drygridunc(ix,jy,ks,kp,l,nage)* &
                         exp(-1.*outstep*decay(ks))
                  end do
                end do
! Nested output grid
                if (nested_output.eq.1) then
                  do jy=0,numygridn-1
                    do ix=0,numxgridn-1
                      wetgriduncn(ix,jy,ks,kp,l,nage)= &
                           wetgriduncn(ix,jy,ks,kp,l,nage)* &
                           exp(-1.*outstep*decay(ks))
                      drygriduncn(ix,jy,ks,kp,l,nage)= &
                           drygriduncn(ix,jy,ks,kp,l,nage)* &
                           exp(-1.*outstep*decay(ks))
                    end do
                  end do
                endif
              end do
            end do
          endif
        end do
      end do
    endif


!!! CHANGE: These lines may be switched on to check the conservation
!!! of mass within FLEXPART
!   if (itime.eq.loutnext) then
!   do 247 ksp=1, nspec
!   do 247 kp=1, maxpointspec_act
!47         xm(ksp,kp)=0.

!   do 249 ksp=1, nspec
!     do 249 j=1,numpart
!          if (ioutputforeachrelease.eq.1) then
!            kp=npoint(j)
!          else
!            kp=1
!          endif
!       if (itra1(j).eq.itime) then
!          xm(ksp,kp)=xm(ksp,kp)+xmass1(j,ksp)
!         write(*,*) 'xmass: ',xmass1(j,ksp),j,ksp,nspec
!       endif
!49     continue
!  do 248 ksp=1,nspec
!  do 248 kp=1,maxpointspec_act
!  xm_depw(ksp,kp)=0.
!  xm_depd(ksp,kp)=0.
!     do 248 nage=1,nageclass
!       do 248 ix=0,numxgrid-1
!         do 248 jy=0,numygrid-1
!           do 248 l=1,nclassunc
!              xm_depw(ksp,kp)=xm_depw(ksp,kp)
!    +                  +wetgridunc(ix,jy,ksp,kp,l,nage)
!48                 xm_depd(ksp,kp)=xm_depd(ksp,kp)
!    +                  +drygridunc(ix,jy,ksp,kp,l,nage)
!             do 246 ksp=1,nspec
!46                    write(88,'(2i10,3e12.3)')
!    +              itime,ksp,(xm(ksp,kp),kp=1,maxpointspec_act),
!    +                (xm_depw(ksp,kp),kp=1,maxpointspec_act),
!    +                (xm_depd(ksp,kp),kp=1,maxpointspec_act)
!  endif
!!! CHANGE




! Check whether concentrations are to be calculated
!**************************************************

    if ((ldirect*itime.ge.ldirect*loutstart).and. &
         (ldirect*itime.le.ldirect*loutend)) then ! add to grid
      if (mod(itime-loutstart,loutsample).eq.0) then

! If we are exactly at the start or end of the concentration averaging interval,
! give only half the weight to this sample
!*****************************************************************************

        if ((itime.eq.loutstart).or.(itime.eq.loutend)) then
          weight=0.5
        else
          weight=1.0
        endif
        outnum=outnum+weight

        call conccalc(itime,weight)

      endif

! :TODO: MPI output of particle positions;  each process sequentially
!   access the same file
      if ((mquasilag.eq.1).and.(itime.eq.(loutstart+loutend)/2)) &
           call partoutput_short(itime)    ! dump particle positions in extremely compressed format


! Output and reinitialization of grid
! If necessary, first sample of new grid is also taken
!*****************************************************

      if ((itime.eq.loutend).and.(outnum.gt.0.)) then
        if ((iout.le.3.).or.(iout.eq.5)) then

! MPI: Root process collects/sums grids
!**************************************
          call mpif_tm_reduce_grid

462
          if (mp_measure_time) call mpif_mtime('iotime',0)
463
464
465
466
467
468
469
470
471
          if (surf_only.ne.1) then
            if (lroot) then
              if (lnetcdfout.eq.1) then 
                call concoutput_netcdf(itime,outnum,gridtotalunc,wetgridtotalunc,&
                     &drygridtotalunc)
              else 
                call concoutput(itime,outnum,gridtotalunc,wetgridtotalunc,drygridtotalunc)
              endif
            else
472
! zero arrays on non-root processes
473
              gridunc(:,:,:,:,:,:,:)=0.
474
              creceptor(:,:)=0.
475
476
477
478
479
480
481
482
483
484
            end if
          else 
            if (lroot) then
              if (lnetcdfout.eq.1) then
                call concoutput_surf_netcdf(itime,outnum,gridtotalunc,wetgridtotalunc,&
                     &drygridtotalunc)
              else
                call concoutput_surf(itime,outnum,gridtotalunc,wetgridtotalunc,drygridtotalunc)
              end if
            else
485
! zero arrays on non-root processes
486
              gridunc(:,:,:,:,:,:,:)=0.
487
              creceptor(:,:)=0.
488
489
            endif
          endif
490
          if (mp_measure_time) call mpif_mtime('iotime',1)
491
492
493
494
495
496

          if (nested_output.eq.1) then

! MPI: Root process collects/sums nested grids
!*********************************************
            call mpif_tm_reduce_grid_nest
497
498
 
           if (mp_measure_time) call mpif_mtime('iotime',0)
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

            if (lnetcdfout.eq.0) then
              if (surf_only.ne.1) then

                if (lroot) then
                  call concoutput_nest(itime,outnum)
                else
                  griduncn(:,:,:,:,:,:,:)=0.
                end if

              else  ! :TODO: check for zeroing in the netcdf module
                call concoutput_surf_nest(itime,outnum)

              end if

            else

              if (surf_only.ne.1) then
                if (lroot) then              
                  call concoutput_nest_netcdf(itime,outnum)
                else
                  griduncn(:,:,:,:,:,:,:)=0.
                end if
              else 
                if (lroot) then
                  call concoutput_surf_nest_netcdf(itime,outnum)
                else
                  griduncn(:,:,:,:,:,:,:)=0.
                end if
              endif


            end if
          end if
533
          
534
535
536
537
538

          outnum=0.
        endif
        if ((iout.eq.4).or.(iout.eq.5)) call plumetraj(itime)
        if (iflux.eq.1) call fluxoutput(itime)
539
540
        if (mp_measure_time) call mpif_mtime('iotime',1)

541
542
543

! Decide whether to write an estimate of the number of particles released, 
! or exact number (require MPI reduce operation)
544
545
546
547
548
        if (mp_dev_mode) then
          numpart_tot_mpi = numpart
        else
          numpart_tot_mpi = numpart*mp_partgroup_np
        end if
549

550
551
        if (mp_exact_numpart.and..not.(lmpreader.and.lmp_use_reader).and.&
             &.not.mp_dev_mode) then
552
553
554
555
          call MPI_Reduce(numpart, numpart_tot_mpi, 1, MPI_INTEGER, MPI_SUM, id_root, &
               & mp_comm_used, mp_ierr)
        endif
        
556
        !CGZ-lifetime: output species lifetime
557
        if (lroot.or.mp_dev_mode) then
558
559
560
        !   write(*,*) 'Overview species lifetime in days', &
        !        real((species_lifetime(:,1)/species_lifetime(:,2))/real(3600.0*24.0))
        !   write(*,*) 'all info:',species_lifetime
561
562
          write(*,45) itime,numpart_tot_mpi,gridtotalunc,&
               &wetgridtotalunc,drygridtotalunc
563
564
565
        !   if (verbosity.gt.0) then
        !     write (*,*) 'timemanager> starting simulation'
        !   end if
566
        end if
567

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
45      format(i13,' SECONDS SIMULATED: ',i13, ' PARTICLES:    Uncertainty: ',3f7.3)
46      format(' Simulated ',f7.1,' hours (',i13,' s), ',i13, ' particles')
        if (ipout.ge.1) then
          do ip=0, mp_partgroup_np-1
            if (ip.eq.mp_partid) call partoutput(itime) ! dump particle positions
            call mpif_mpi_barrier
          end do
        end if

        loutnext=loutnext+loutstep
        loutstart=loutnext-loutaver/2
        loutend=loutnext+loutaver/2
        if (itime.eq.loutstart) then
          weight=0.5
          outnum=outnum+weight
          call conccalc(itime,weight)
        endif


! Check, whether particles are to be split:
! If so, create new particles and attribute all information from the old
! particles also to the new ones; old and new particles both get half the
! mass of the old ones
!************************************************************************
        
        if (ldirect*itime.ge.ldirect*itsplit) then
          n=numpart
          do j=1,numpart
            if (ldirect*itime.ge.ldirect*itrasplit(j)) then
!                if (n.lt.maxpart) then
              if (n.lt.maxpart_mpi) then
                n=n+1
                itrasplit(j)=2*(itrasplit(j)-itramem(j))+itramem(j)
                itrasplit(n)=itrasplit(j)
                itramem(n)=itramem(j)
                itra1(n)=itra1(j)
                idt(n)=idt(j)
                npoint(n)=npoint(j)
                nclass(n)=nclass(j)
                xtra1(n)=xtra1(j)
                ytra1(n)=ytra1(j)
                ztra1(n)=ztra1(j)
                uap(n)=uap(j)
                ucp(n)=ucp(j)
                uzp(n)=uzp(j)
                us(n)=us(j)
                vs(n)=vs(j)
                ws(n)=ws(j)
                cbt(n)=cbt(j)
                do ks=1,nspec
                  xmass1(j,ks)=xmass1(j,ks)/2.
                  xmass1(n,ks)=xmass1(j,ks)
                end do
              endif
            endif
          end do
          numpart=n
        endif
      endif
    endif
    

    if (itime.eq.ideltas) exit         ! almost finished

! Compute interval since radioactive decay of deposited mass was computed
!************************************************************************

    if (itime.lt.loutnext) then
      ldeltat=itime-(loutnext-loutstep)
    else                                  ! first half of next interval
      ldeltat=itime-loutnext
    endif


! Loop over all particles
!************************
    if (mp_measure_time) call mpif_mtime('partloop1',0)

!--------------------------------------------------------------------------------
! various variables for testing reason of CBL scheme, by mc
    well_mixed_vector=0. !erase vector to test well mixed condition: modified by mc
    well_mixed_norm=0.   !erase normalization to test well mixed condition: modified by mc
    avg_ol=0.
    avg_wst=0.
    avg_h=0.
    avg_air_dens=0.  !erase vector to obtain air density at particle positions: modified by mc
!--------------------------------------------------------------------------------

    do j=1,numpart

! If integration step is due, do it
!**********************************

      if (itra1(j).eq.itime) then

        if (ioutputforeachrelease.eq.1) then
          kp=npoint(j)
        else
          kp=1
        endif
! Determine age class of the particle
        itage=abs(itra1(j)-itramem(j))
        do nage=1,nageclass
          if (itage.lt.lage(nage)) exit
        end do

! Initialize newly released particle
!***********************************

        if ((itramem(j).eq.itime).or.(itime.eq.0)) &
             call initialize(itime,idt(j),uap(j),ucp(j),uzp(j), &
             us(j),vs(j),ws(j),xtra1(j),ytra1(j),ztra1(j),cbt(j))

! Memorize particle positions
!****************************

        xold=xtra1(j)
        yold=ytra1(j)
        zold=ztra1(j)

! Integrate Lagevin equation for lsynctime seconds
!*************************************************

691
        if (mp_measure_time) call mpif_mtime('advance',0)
692
693
694
695
696

        call advance(itime,npoint(j),idt(j),uap(j),ucp(j),uzp(j), &
             us(j),vs(j),ws(j),nstop,xtra1(j),ytra1(j),ztra1(j),prob, &
             cbt(j))

697
698
        if (mp_measure_time) call mpif_mtime('advance',1)

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

! Calculate the gross fluxes across layer interfaces
!***************************************************

        if (iflux.eq.1) call calcfluxes(nage,j,xold,yold,zold)


! Determine, when next time step is due
! If trajectory is terminated, mark it
!**************************************

        if (nstop.gt.1) then
          if (linit_cond.ge.1) call initial_cond_calc(itime,j)
          itra1(j)=-999999999
        else
          itra1(j)=itime+lsynctime


! Dry deposition and radioactive decay for each species
! Also check maximum (of all species) of initial mass remaining on the particle;
! if it is below a threshold value, terminate particle
!*****************************************************************************

          xmassfract=0.
          do ks=1,nspec
            if (decay(ks).gt.0.) then             ! radioactive decay
              decfact=exp(-real(abs(lsynctime))*decay(ks))
            else
              decfact=1.
            endif

            if (DRYDEPSPEC(ks)) then        ! dry deposition
              drydeposit(ks)=xmass1(j,ks)*prob(ks)*decfact
              xmass1(j,ks)=xmass1(j,ks)*(1.-prob(ks))*decfact
              if (decay(ks).gt.0.) then   ! correct for decay (see wetdepo)
                drydeposit(ks)=drydeposit(ks)* &
                     exp(real(abs(ldeltat))*decay(ks))
              endif
            else                           ! no dry deposition
              xmass1(j,ks)=xmass1(j,ks)*decfact
            endif

741
742
! Skip check on mass fraction when npoint represents particle number
            if (mdomainfill.eq.0.and.mquasilag.eq.0) then
743
              if (xmass(npoint(j),ks).gt.0.)then 
744
745
                   xmassfract=max(xmassfract,real(npart(npoint(j)))* &
                   xmass1(j,ks)/xmass(npoint(j),ks))
746
747
                   
                   !CGZ-lifetime: Check mass fraction left/save lifetime
748
                   ! if(lroot.and.real(npart(npoint(j)))*xmass1(j,ks)/xmass(npoint(j),ks).lt.e_inv.and.checklifetime(j,ks).eq.0.)then
749
                       !Mass below 1% of initial >register lifetime
750
                   !     checklifetime(j,ks)=abs(itra1(j)-itramem(j))
751

752
753
754
                   !     species_lifetime(ks,1)=species_lifetime(ks,1)+abs(itra1(j)-itramem(j))
                   !     species_lifetime(ks,2)= species_lifetime(ks,2)+1
                   ! endif
755
756
757
                   !CGZ-lifetime: Check mass fraction left/save lifetime
                   
              endif
758
759
760
761
762
            else
              xmassfract=1.
            endif
          end do

763
          if (xmassfract.lt.minmass) then ! .and. sum(real(npart(npoint(j)))*xmass1(j,:)).lt.1.0) then   ! terminate all particles carrying less mass
764
765
          !            print*,'terminated particle ',j,' for small mass (', sum(real(npart(npoint(j)))* &
          !         xmass1(j,:)), ' of ', sum(xmass(npoint(j),:)),')'
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
            itra1(j)=-999999999
          endif

!        Sabine Eckhardt, June 2008
!        don't create depofield for backward runs
          if (DRYDEP.AND.(ldirect.eq.1)) then
            call drydepokernel(nclass(j),drydeposit,real(xtra1(j)), &
                 real(ytra1(j)),nage,kp)
            if (nested_output.eq.1) call drydepokernel_nest( &
                 nclass(j),drydeposit,real(xtra1(j)),real(ytra1(j)), &
                 nage,kp)
          endif

! Terminate trajectories that are older than maximum allowed age
!***************************************************************

          if (abs(itra1(j)-itramem(j)).ge.lage(nageclass)) then
            if (linit_cond.ge.1) &
                 call initial_cond_calc(itime+lsynctime,j)
            itra1(j)=-999999999
786
            !print*, 'terminated particle ',j,'for age'
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
          endif
        endif

      endif

    end do ! j=1, numpart

    if(mp_measure_time) call mpif_mtime('partloop1',1)


! Added by mc: counter of "unstable" particle velocity during a time scale
!   of maximumtl=20 minutes (defined in com_mod)

    total_nan_intl=0
    i_nan=i_nan+1 ! added by mc to count nan during a time of maxtl (i.e. maximum tl fixed here to 20 minutes, see com_mod)
    sum_nan_count(i_nan)=nan_count
    if (i_nan > maxtl/lsynctime) i_nan=1 !lsynctime must be <= maxtl
    do ii_nan=1, (maxtl/lsynctime) 
      total_nan_intl=total_nan_intl+sum_nan_count(ii_nan)
    end do

! Output to keep track of the numerical instabilities in CBL simulation
! and if they are compromising the final result (or not):
    if (cblflag.eq.1) print *,j,itime,'nan_synctime',nan_count,'nan_tl',total_nan_intl  


  end do ! itime=0,ideltas,lsynctime


! Complete the calculation of initial conditions for particles not yet terminated
!*****************************************************************************

! eso :TODO: this not implemented yet (transfer particles to PID 0 or rewrite)
Espen Sollum's avatar
Espen Sollum committed
820
! the tools to do this are already in mpi_mod.f90
821
822
823
824
825
826
827
828
  if (lroot) then 
    do j=1,numpart
      if (linit_cond.ge.1) call initial_cond_calc(itime,j)
    end do
  end if


  if (ipout.eq.2) then
Espen Sollum's avatar
Espen Sollum committed
829
! MPI process 0 creates the file, the other processes append to it
830
831
    do ip=0, mp_partgroup_np-1
      if (ip.eq.mp_partid) then 
Espen Sollum's avatar
Espen Sollum committed
832
        !if (mp_dbg_mode) write(*,*) 'call partoutput(itime), proc, mp_partid',ip,mp_partid
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        call partoutput(itime)    ! dump particle positions
      end if
      call mpif_mpi_barrier
    end do
  end if

! eso :TODO: MPI
  if (linit_cond.ge.1.and.lroot) call initial_cond_output(itime)   ! dump initial cond. field


! De-allocate memory and end
!***************************

999 if (iflux.eq.1) then
    deallocate(flux)
  endif
  if (OHREA) then
    deallocate(OH_field,OH_hourly,lonOH,latOH,altOH)
  endif
  if (ldirect.gt.0) then
    deallocate(drygridunc,wetgridunc)
  endif
  deallocate(gridunc)
856
  deallocate(xpoint1,xpoint2,ypoint1,ypoint2,zpoint1,zpoint2,xmass, checklifetime)
857
858
859
860
861
862
863
864
865
866
867
868
869
870
  deallocate(ireleasestart,ireleaseend,npart,kindz)
  deallocate(xmasssave)
  if (nested_output.eq.1) then
    deallocate(orooutn, arean, volumen)
    if (ldirect.gt.0) then
      deallocate(griduncn,drygriduncn,wetgriduncn)
    endif
  endif
  deallocate(outheight,outheighthalf)
  deallocate(oroout, area, volume)

  if (mp_measure_time) call mpif_mtime('timemanager',1)

end subroutine timemanager