# FACT Buildings Footprint and Height ML detected building footprints and height open database. Bing Maps open building footprints. with partial global coverage, only US and Europe included here. https://github.com/microsoft/GlobalMLBuildingFootprints --- ## Use 1. Pull the image: > docker pull registry.git.nilu.no/fact/data/fact_bldgs:latest 2. Run this data service: >docker run -t -i --name fact_bldgs -e MARIADB_DATABASE=FACT_bldgs -e MYSQL_ROOT_PASSWORD=devops -p 3315:3306 -d registry.git.nilu.no/fact/data/fact_bldgs:0.1 The container makes available a MariaDB instance with the full database on airports and traffic **FACT_bldgs**. It is reachable on port 3315 of the localhost and the root password is 'devops'. --- ## Specifications ``` Table |Size (MB)|Rows (#) | ----------------+---------+---------+ footprints | 91081.03|341191944| geometry_columns| 0.02| 0| spatial_ref_sys | 0.02| 0| ```  Properties in footprints contain a dictionary with height (-1 if missing) and confidence, example: >{ "height": -1.0, "confidence": -1.0 } **All spatial objects are converted to EPSG:4326.** --- ## Notes The code downloads files for European countries and US, transforms them into geojson with right CRS, and then loads them into a DB. Not used here: https://sites.research.google/open-buildings/ --- ## Author Riccardo Boero - ribo@nilu.no ## License The data and software in this repository are licensed under theOpen Data Commons Open Database License [(ODbL) v1.0](https://opendatacommons.org/licenses/odbl/1-0/) ## Citation - Boero, Riccardo. 2024. “FACT Data: Buildings Footprint and Height.” OSF. [doi:10.17605/OSF.IO/CHDJR](https://doi.org/10.17605/OSF.IO/CHDJR). Part of the Fine scAle eConomic daTa - FACT project: - Boero, Riccardo. 2024. “Fine scAle eConomic daTa - FACT.” OSF. [doi:10.17605/OSF.IO/PV4ZW](https://doi.org/10.17605/OSF.IO/PV4ZW).