NERVE_Emissions_Statistical_Oputput.m 7.65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function NERVE_Emissions_Statistical_Oputput()
% Data needed by the MijlDirektoratet sheet
comps  = [{'N2O'}];
comps  = [{'CO2'},{'FC'},{'CH4'},{'N2O'}];
comps  = [{'CO2'},{'FC'},{'CH4'}];
comps  = [{'CO2'},{'FC'}];
%x NV(kom,veh) %#
%x TD(kom,veh) %km
%x ORdComp(kom,veh) % frac
%x FRdComp(kom,veh) % frac
%x L_IN(kom)        % km/yr
%x H_IN(kom)        % km/yr
%x B_IN(kom)        % km/yr

%Check the below values against Roads: 
%s L_FROM(kom)       % km/yr
%s H_FROM(kom)       % km/yr
%s B_FROM(kom)       % km/yr
%s EF_IN(kom,veh)    % g/km
%s EM_IN(kom,veh)    % g/yr
%s EF_FROM(kom,veh)  % g/km
%s EM_FROM(kom,veh)  % g/yr


% Files that must be read once only
% 'Model_Vehicles_Merge_SSB_and_HBEFA_Vehicles.xlsx'
TM = readtable('Input/Model_Vehicles_Merge_SSB_and_HBEFA_Vehicles.xlsx','Sheet','MODEL');
LightVehiclesIdx = TM.ClassNum==1|TM.ClassNum==2;
BusesVehiclesIdx = TM.ClassNum==3|TM.ClassNum==4;
HeavyVehiclesIdx = TM.ClassNum==5|TM.ClassNum==6|TM.ClassNum==7;

for com = 1:length(comps)
    % files that must be read per species
    R_EF_File = sprintf('Temp/EFA_Table_MODEL_%s.mat',char(comps(com)));
    load(R_EF_File,'TFout'); % TFout
36

37
38
    fprintf('%s\n',char(comps(com)))

39
40
    for Tyear = 2009:2019
        fprintf('%i\n',Tyear)
41
42
43
44

        % files that must be read per year
        munFile = sprintf('Temp/Municipal_Traffic_Exchange_%i.mat',Tyear);
        RdDistFile = sprintf('Output/RoadTypeDistanceMunicipal%i.mat',Tyear);
45
        load(munFile)
46
47
48
49
50
51
52
        load(RdDistFile) % KDD
        
        % files that must be read for each year and component!
        EF_File = sprintf('Temp/EF_On_AllRoadCond_Municipality_%i_%s.mat',Tyear,char(comps(com)));
        load(EF_File)
                
        RLinks = shaperead(sprintf('Output/Traffic_Emissions_%i',Tyear));
53
54

        DaysInYear = datenum([Tyear+1 1 1 0 0 0])-datenum([Tyear 1 1 0 0 0]);
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        
        KOMM       = extractfield(RLinks,'KOMMS');
        KOMMe      = extractfield(RLinks,'KOMME');
        IDO        = extractfield(RLinks,'IDO');
        L_ADT      = extractfield(RLinks,sprintf('L_ADT%i',Tyear));
        H_ADT      = extractfield(RLinks,sprintf('H_ADT%i',Tyear));
        B_ADT      = extractfield(RLinks,sprintf('B_ADT%i',Tyear));
        DISTANCE   = extractfield(RLinks,'DISTANCE');
        LW         = DaysInYear*L_ADT.*DISTANCE;
        HW         = DaysInYear*H_ADT.*DISTANCE;
        BW         = DaysInYear*B_ADT.*DISTANCE;
        ND_NERVE_L = sum(LW);
        ND_NERVE_H = sum(HW);
        ND_NERVE_B = sum(BW);
        ND_NERVE   = ND_NERVE_L + ND_NERVE_H + ND_NERVE_B;

        % Ø----------------------------------------------------------------
        % find *L_IN(kom)*
        ukomm = unique(KOMM);
        for k=1:length(ukomm)
            f  = find(KOMM  == ukomm(k));
            f2 = find((KOMMe == ukomm(k))&(KOMM ~= ukomm(k)) );
            L_IN(k) = sum(LW(f).*IDO(f))+sum(LW(f2).*(1-IDO(f2)));
            H_IN(k) = sum(HW(f).*IDO(f))+sum(HW(f2).*(1-IDO(f2)));
            B_IN(k) = sum(BW(f).*IDO(f))+sum(BW(f2).*(1-IDO(f2)));
        end
        
        L_EM      = extractfield(RLinks,sprintf('EM_L_%s',char(comps(com))));
        H_EM      = extractfield(RLinks,sprintf('EM_H_%s',char(comps(com))));
        B_EM      = extractfield(RLinks,sprintf('EM_B_%s',char(comps(com))));
        
        EM = L_EM+H_EM+B_EM; 
        for k=1:length(ukomm)
            f  = find(KOMM  == ukomm(k));
            f2 = find((KOMMe == ukomm(k))&(KOMM ~= ukomm(k)) );
            EM_INr(k) = sum(EM(f).*IDO(f))+sum(EM(f2).*(1-IDO(f2)));
            EM_INr(k) = sum(EM(f).*IDO(f))+sum(EM(f2).*(1-IDO(f2)));
            EM_INr(k) = sum(EM(f).*IDO(f))+sum(EM(f2).*(1-IDO(f2)));
        end
        
        % Vehicle_dist
        %------------------------------------------------------------------
        % find *NV(kom,veh)* from:: SSB data
        % find *TD(kom,veh)* from:: SSB data
        % find *OrdComp(kom,veh)* from:: SSB data
        % find *FrdComp(kom,veh)* from:: SSB data
        NV  = Vehicle_dist.modelNV;
        TD  = Vehicle_dist.modelTD;
103
104
        ORdComp = Vehicle_dist.Vdist;
        FRdComp = Vehicle_dist.VdistFROM;        
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        
        %------------------------------------------------------------------
        % Estimate *EF_IN(kom,Veh)  * based on:::: EF_IN and exchange
        
        KDD_L = KDD.TraffDataL;
        KDD_H = KDD.TraffDataH;
        KDD_B = KDD.TraffDataB;
        
        % DOES NOT INCLUDE BIO!
        
        RdEFs = table2array(TFout(:,8:end));       
        vehicles = TFout.Properties.VariableNames(8:end);
        for k=1:length(ukomm)
            LtrafficSitW_IN = KDD_L(:,k)/sum(KDD_L(:,k));
            HtrafficSitW_IN = KDD_H(:,k)/sum(KDD_H(:,k));
            BtrafficSitW_IN = KDD_B(:,k)/sum(KDD_B(:,k));
            for veh = 1:length(vehicles)
                if (TM.Model_Class(veh) ==1 || TM.Model_Class(veh) ==2)
                    EF_IN(k,veh) = sum(RdEFs(:,veh).*LtrafficSitW_IN);
                elseif(TM.Model_Class(veh) ==5 ||TM.Model_Class(veh) ==6 ||TM.Model_Class(veh) ==7)
                    EF_IN(k,veh) = sum(RdEFs(:,veh).*HtrafficSitW_IN);
                elseif(TM.Model_Class(veh) ==3 ||TM.Model_Class(veh) ==4)
                    EF_IN(k,veh) = sum(RdEFs(:,veh).*BtrafficSitW_IN);
                else
                    fprintf('fail\n')
                end
            end
        end
        
        %------------------------------------------------------------------
        % Estimate *EM_IN(kom,Veh)  * based on:::: EF_IN and exchange
        
        for k=1:length(ukomm)
            for veh = 1:length(vehicles)
                type = TM.Model_Class(veh);
                if type <= 2
141
                    EM_IN(k,veh) = L_IN(k)*ORdComp(k,veh)*EF_IN(k,veh);
142
                elseif (type == 5 || type == 6 || type == 7)
143
                    EM_IN(k,veh) = H_IN(k)*ORdComp(k,veh)*EF_IN(k,veh);
144
                elseif (type == 3 || type == 4)
145
                    EM_IN(k,veh) = B_IN(k)*ORdComp(k,veh)*EF_IN(k,veh);
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
                end
            end
        end

        
% END IN
%--------------------------------------------------------------------------
% This method assigns the total Emissions based on the exchange.

        for komm = 1:size(TrafficFROM,2)
            I            = find(TrafficFROM(komm,:)>0);
            Tshare       = (TrafficFROM(komm,I)/100);
            L_FROM(komm) = nansum(L_IN(I).*Tshare);
            H_FROM(komm) = nansum(H_IN(I).*Tshare);
            B_FROM(komm) = nansum(B_IN(I).*Tshare);
        end
        
        EF_FROM=zeros(size(EF_IN));
        for komm=1:size(EF_IN,1)
            for Veh=1:size(EF_IN,2)
                 EF_FROM(komm,Veh) = EF_FROM(komm,Veh)+nansum(EF_IN(:,Veh).*(TrafficFROM(:,komm)/100));
             end
        end
 
        %--------------------------------------------------------------------------
        % create *L_FROM(kom)* based on:::: L_IN and exchange
        for k=1:length(ukomm)
            for veh = 1:length(vehicles)
                type = TM.Model_Class(veh);
                if type <= 2
176
                    EM_FROM(k,veh) = L_FROM(k)*FRdComp(k,veh)*EF_FROM(k,veh);
177
                elseif (type == 5 || type == 6 || type == 7)
178
                    EM_FROM(k,veh) = H_FROM(k)*FRdComp(k,veh)*EF_FROM(k,veh);
179
                elseif (type == 3 || type == 4)
180
                    EM_FROM(k,veh) = B_FROM(k)*FRdComp(k,veh)*EF_FROM(k,veh);
181
182
183
184
185
186
187
188
189
                end
            end
        end
        

        
        
        
        fileout = sprintf('Output/NERVE_output_%s_%04i.mat',char(comps(com)),Tyear);
190
        fprintf('Processed Emissions for %s year %i\n',char(comps(com)),Tyear)
191
192
193
194
195
196
        save(fileout,'NV','TD','L_IN','H_IN','B_IN','L_FROM','H_FROM','B_FROM','ORdComp','FRdComp','EF_IN','EF_FROM','EM_IN','EM_FROM')
    end
end


end