Emissions_Calculations_SSB.m 8.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
%--------------------------------------------------------------------------
% This file is part of NERVE
% 
% NERVE is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation version 3.
% 
% NERVE is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with NERVE.  If not, see <https://www.gnu.org/licenses/>.
%--------------------------------------------------------------------------
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
function [Sn] = Emissions_Calculations_SSB(Calc_Links,Vehicle_dist)
%--------------------------------------------------------------------------
%
% 22.10.2020 -Henrik Grythe
% Kjeller NILU
%--------------------------------------------------------------------------
global tfold Tyear SSB_Vehicle_dist comps

% 1) Where does variable roads come from?
% 1b) Does it need to be updated in Emission Factor stuff.

% Need Vehicle Distribution for municipalities. 


%--------------------------------------------------------------
% ROAD LINK 
%--------------------------------------------------------------
% extract fields needed for calculations
fprintf('\nExtracts necessary fields   \n')
fprintf('Traffic and Vehicle Year:  %i \n',Tyear)
fprintf('RoadLinks               :  %i \n',size(Calc_Links,1))

file = sprintf('%s%s',tfold,'roads');
fprintf('Warning,using roads file not produced by NERVE model\n%s\n',file)
load(file)

42
43
44
45




46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
L     = extractfield(Calc_Links,sprintf('L_ADT%04i',Tyear));  % Traffic Volume (# day-1)
H     = extractfield(Calc_Links,sprintf('H_ADT%04i',Tyear));  % Traffic Volume (# day-1)
B     = extractfield(Calc_Links,sprintf('B_ADT%04i',Tyear));  % Traffic Volume (# day-1)
HBEFA = extractfield(Calc_Links,'HBEFA_EQIV');                % Type of Road        (Access->MW)
SPD   = extractfield(Calc_Links,'SPEED');                     % Speed on Road       (km hr-1)
DEC   = extractfield(Calc_Links,'SLOPE');                     % Verticality of Road (%)
ENV   = extractfield(Calc_Links,'URBAN');                     % Urbanity of Road    (URB/RUR)
LEN   = extractfield(Calc_Links,'DISTANCE')*1000;             % Length of Road      (in metres)
RU    = extractfield(Calc_Links,'RUSH_DELAY');

% Classification of rush hour traffic. 0-4 (4 is congested)
ru                 = zeros(size(RU));
ru(RU<=0.1)        = 1;
ru(RU>0.1 & RU<=4) = 2;
ru(RU>4 & RU<=15)  = 3;
ru(RU>15)          = 4;


dayInYear = round(datenum([Tyear+1, 1, 1, 12 0 0 ])-datenum([Tyear, 1, 1, 12, 0 ,0])); 
fprintf('Using %i days in year\n',dayInYear)
% Make a cleaned version for writing to file
Tout = struct2table(Calc_Links);

MP_airbornefraction = 0.1;
MP_wear_Light       = 0.1;
MP_wear_Heavy       = 0.5;

% Congestion weights.  Traffic part delayed (TPD)
% Combine the different congestion levels by volume to determine the
% actual EF:
TPD=[1.0,0.0,0.0,0.0,0.0;...
    0.6,0.4,0.0,0.0,0.0;...
    0.6,0.2,0.2,0.0,0.0;...
    0.6,0.15,0.1,0.1,0.05];



%%%%% Internal weight for traffic type going from Class -> Traffic type
%    Class_Weight = [1, 0.8, 0.2, 0.5, 0.5, 0.5, 0.5];

%--------------------------------------------------------------
% VEHICLE DISTRIBUTION 
%--------------------------------------------------------------
TM = readtable(SSB_Vehicle_dist,'Sheet','MODEL');

LightVehiclesIdx =  TM.ClassNum==1|TM.ClassNum==2;
HeavyVehiclesIdx =  TM.ClassNum==3|TM.ClassNum==4;
BusesVehiclesIdx =  TM.ClassNum==5|TM.ClassNum==6|TM.ClassNum==7;

VD               = Vehicle_dist.Vdist;

%--------------------------------------------------------------
% EMISSION FACTORS 
%--------------------------------------------------------------

aEM_L   = zeros(length(comps),length(Calc_Links));
aEM_B   = zeros(size(aEM_L));
aEM_H   = zeros(size(aEM_L));
aEM_2W  = zeros(size(aEM_L));
aEM_Tot = zeros(size(aEM_L));

nEM_L   = zeros(size(aEM_L));
nEM_B   = zeros(size(aEM_L));
nEM_H   = zeros(size(aEM_L));
nEM_2W  = zeros(size(aEM_L));
nEM_Tot = zeros(size(aEM_L));


% set which compound (com)
for com = 1:length(comps)
116
117
    
    
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    Zroads = 0;
    % load the emission factor
    EFfile = sprintf('%sEFA_matrix41_MODEL_%s.mat',tfold,char(comps(com)));
    load(EFfile)
    fprintf('Loaded:\n%s\n',EFfile)
    fprintf('******* %s **********\n',char(comps(com)))
    fprintf('Loaded: %s Vehicles     : %i \n',char(comps(com)), size(EFA,1))
    
    % loop through Roads individually
    for f = 1:length(Calc_Links)
        komm = extractfield(Calc_Links(f),'KOMM');
        Kidx = find(Vehicle_dist.D1_KommNr == komm);
        Km       = LEN(f)*1e-3;
        % Set the empty streets speedlimit to 40
        % correct whatever have slipped through the original
        % classification of the roads file.
        if rem(SPD(f),10) ~= 0; SPD(f) = round(SPD(f)/10)*10; end
        if SPD(f)< 30; SPD(f)=40; end
        if SPD(f)>130; SPD(f)=40; end
        
        % find the speed index on the road
        SpIdx(f) = find(roads.RoadSpeeds==SPD(f));
        
        % Find the slope index of the road
        SlIdx(f) = find(roads.RoadGradient==DEC(f));
        
        % find the environment
        if ENV(f) == 1
            EnIdx(f) = 2;
        elseif ENV(f) == 0
            EnIdx(f) = 1;
        else
            EnIdx(f) = 2;
            warning(sprintf('No environment set ENV = %i',ENV(f)))
        end
        
        % Fix to update road definitions to what is included in HBEFAv4.1
        if HBEFA(f) == 10 && SPD(f) == 40
            HBEFA(f) = 3;
        end
        
        % calculate the emissions per vehicle (empv) driving the link.
        %   Length(Km) * EF(g/Km) = gram
        for cg = 1:5
            RLEM(cg,:) = VD(Kidx,:)'.*EFA(:,HBEFA(f),SpIdx(f),SlIdx(f),cg,EnIdx(f))*Km;
        end
        
        % Test the average emissions for the different classes.
        Lempv = sum(RLEM(:,LightVehiclesIdx),2);
        Hempv = sum(RLEM(:,HeavyVehiclesIdx),2);
        Bempv = sum(RLEM(:,BusesVehiclesIdx),2); 

        
        % use the rushour integer weight to weight the different emissions.
        LemAve =sum(Lempv.*TPD(ru(f),:)');
        HemAve =sum(Hempv.*TPD(ru(f),:)');
        BemAve =sum(Bempv.*TPD(ru(f),:)');

        EM_L(f) = LemAve *L(f)*dayInYear;
        EM_H(f) = HemAve *L(f)*dayInYear;       
        EM_B(f) = BemAve *L(f)*dayInYear;
        EM_2W(f) = 0;        
        EM_Tot(f)  = EM_L(f)+EM_H(f)+EM_B(f)+EM_2W(f);
                
        if isnan(EM_Tot(f))
            if isnan(EM_L(f))
             fprintf('road %i No emissions  \n',f)                
            end
            Zroads = Zroads+1;
%             fprintf('road %i No emissions  ',f)
%             fprintf('HBEFA %i; ',HBEFA(f))
%             fprintf('SpIdx %i; ',SpIdx(f))
%             fprintf('SlIdx %i; ',SlIdx(f))
%             fprintf('EnIdx %i\n',EnIdx(f))
%             fprintf(' %i\n',EnIdx(f))
%             fprintf('%04i %s/%s/%i/%i%%\n',f,char(roads.RoadEnv(EnIdx(f))),...
%                 char(roads.RoadType(HBEFA(f))),...
%                 roads.RoadSpeeds(SpIdx(f)),...
%                 roads.RoadGradient(SlIdx(f)))
        end
        %if rem(f,100000)==0; fprintf('Road = %i of %i\n',f, size(Calc_Links,1)); end
    end % road link loop.
    
    aEM_L(com,:)   = EM_L;
    aEM_B(com,:)   = EM_B;
    aEM_H(com,:)   = EM_H;
    aEM_2W(com,:)  = EM_2W;
    aEM_Tot(com,:) = EM_Tot;
    
    % Assign the output table an rename the variable added to contain
    % component information.
    Tout.EM_Tot = EM_Tot';
    Tout.Properties.VariableNames(end) = {sprintf('EM_%s',char(comps(com)))};    
    fprintf('_________________________________________\n')
    fprintf('Light emissions of %s  : %8.2f Ton\n',char(comps(com)),nansum(EM_L)*1e-6)
    fprintf('Buses emissions of %s  : %8.2f Ton\n',char(comps(com)),nansum(EM_B)*1e-6)
    fprintf('Heavy emissions of %s  : %8.2f Ton\n',char(comps(com)),nansum(EM_H)*1e-6)
    fprintf('_________________________________________\n')
    fprintf('Total emissions of %s  : %8.2f Ton\n',char(comps(com)),nansum(EM_Tot)*1e-6)
    fprintf('==========================================\n')
    fprintf('ZeroRoads %i\n',Zroads)
    
%     EM_Class(com,1)= sum(EM_L)*1e-6;
%     EM_Class(com,2)= sum(EM_H)*1e-6;
%     EM_Class(com,3)= sum(EM_B)*1e-6;
end % end loop emissions species.
% in the end, add PM10 emissions of microplastics from tyre wear.
fprintf('Calculating Tyre-wear...\n')
Adj      = SPD/70;
Km       = LEN*1e-3;
wearL    = Adj.*MP_wear_Light.*(365*L).*Km;
wearH    = Adj.*MP_wear_Heavy.*(365*(H+B)).*Km;
Tout.EM_TW10  = MP_airbornefraction*(wearL + wearH)';

% fileout = sprintf('%sOutput_%i.mat',tfold,Tyear);
% %save(fileout,'Class_Weight','TPD','aEM_L','aEM_H','aEM_B','aEM_2W','aEM_Tot','nEM_L','nEM_H','nEM_B','nEM_2W','nEM_Tot')
% save(fileout,'Class_Weight','TPD','aEM_L','aEM_H','aEM_B','aEM_2W','aEM_Tot')


% Finally write the output to a shape file.
fprintf('Re-Structuring Roads...\n')
Sn = table2struct(Tout);
end