test_integration_3inversions.py 18.3 KB
Newer Older
1
2
3
import os
import time
import shutil
4
5
6
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
Antoine Berchet's avatar
Antoine Berchet committed
7
from pathlib import Path
8
9
10
11
12
13
14
15
16
17
18
19
20

import pytest

from pycif.utils.classes.setup import Setup
from pycif.utils.datastores.dump import read_datastore
from pycif.utils.yml import ordered_dump
from pycif.utils.path import init_dir


@pytest.mark.dummy
@pytest.mark.article
@pytest.mark.parametrize(
    "settings", [
Antoine Berchet's avatar
Antoine Berchet committed
21
        {"mode": "4dvar", "minimizer": "M1QN3"},
22
23
24
25
26
27
28
        pytest.param({"mode": "4dvar", "minimizer": "M1QN3", "montecarlo": 10},
                     marks=pytest.mark.uncertainties),
        {"mode": "4dvar", "minimizer": "congrad"},
        {"mode": "ensrf"},
        pytest.param({"mode": "ensrf", "nsample": 5},
                     marks=pytest.mark.uncertainties),
        {"mode": "analytical"}
29
    ]
30
)
Antoine Berchet's avatar
Antoine Berchet committed
31
def test_integration_inversion(dummy_config_inversion, settings, pytestconfig):
32
33
34
35
36
37
    """
    Integration test that runs the dummy_forward model.
    """

    tmpdir, config, tag = dummy_config_inversion
    
Antoine Berchet's avatar
Antoine Berchet committed
38
39
40
41
    # Force reloading observation operator
    # from forward to make computation faster
    config["model"]["reload_H"] = "{}/../H_matrix.pickle".format(tmpdir)
    
42
    # Changing mode
43
    nsimmax = 10
44
45
    if config["datavect"]["components"]["fluxes"]\
            ["parameters"]["CH4"]["hresol"] == "hpixels":
Antoine Berchet's avatar
Antoine Berchet committed
46
        nsimmax = 25
47
48
49
    
    elif config["datavect"]["components"]["fluxes"]\
            ["parameters"]["CH4"]["hresol"] == "global" \
50
            and settings.get("minimizer", "") == "congrad":
51
52
53
54
55
56
57
58
59
60
61
62
63
        nsimmax = 1
        
    if settings["mode"] == "4dvar":
        mode = {
            "plugin": {"name": "4dvar", "version": "std"},
            "minimizer": {
                "plugin": {"name": settings["minimizer"], "version": "std"},
                "simulator": {
                    "plugin": {"name": "gausscost", "version": "std"},
                    "reload_from_previous": True
                },
                "maxiter": nsimmax,
                "nsim": nsimmax,
64
65
                "epsg": 0.0002,
                "df1": 0.5
66
67
68
            },
            "save_out_netcdf": True
        }
69
70
71
72
        if settings["minimizer"] == "congrad":
            mode["minimizer"]["save_uncertainties"] = True
        
        if "montecarlo" in settings:
73
74
75
76
77
            mode["montecarlo"] = {
                "nsample": settings["montecarlo"],
                "perturb_x": True,
                "perturb_y": False
            }
78
        
79
80
81
82
83
84
85
86
87
88
        prior_dir = os.path.join(tmpdir, "obsoperator/fwd_-001/obsvect")
        posterior_dir = os.path.join(tmpdir, "obsoperator/fwd_-002/obsvect")
    
    elif settings["mode"] == "analytical":
        mode = {"plugin": {"name": "analytic", "version": "std",
                           "dump_nc_base_control": True}}
        prior_dir = os.path.join(tmpdir, "obsvect_prior")
        posterior_dir = os.path.join(tmpdir, "obsvect_posterior")
    
    elif settings["mode"] == "ensrf":
Antoine Berchet's avatar
Antoine Berchet committed
89
        nsimmax = 2 * settings.get("nsample", 1) * nsimmax
90
91
92
93
94
95
        mode = {"plugin": {"name": "EnSRF", "version": "std"},
                "nsample": nsimmax}
        prior_dir = os.path.join(tmpdir, "obsvect_prior")
        posterior_dir = os.path.join(tmpdir, "obsvect_posterior")
      
    config["mode"] = mode
96
97
98
99
100
101
    config["platform"] = {
        "plugin":
            {"name": "LSCE", "version": "obelix"}
            if os.getenv("PYCIF_PLATFORM") == "LSCE"
            else {"name": "docker", "version": "cif"}
    }
Antoine Berchet's avatar
Antoine Berchet committed
102
103
104
105
106
107
108
109
110
111
112
113

    # Save ID for later plot of cost function
    resolution = \
        config["datavect"]["components"]["fluxes"]["parameters"]["CH4"][
            "hresol"]
    sigma = config["datavect"]["components"]\
                ["fluxes"]["parameters"]["CH4"]["hcorrelations"]["sigma"]
    correlations = "lowcorr" if sigma == 500 else "highcorr"
    test_id = (settings["mode"], settings.get("minimizer", ""),
               resolution, correlations)

    pytest.test_ids[test_id] = (tmpdir, nsimmax)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    
    # Removing MCF to make computation quicker
    del config["model"]["chemistry"]["acspecies"]["MCF"]
    del config["datavect"]["components"]["fluxes"]["parameters"]["MCF"]
    del config["datavect"]["components"]["concs"]["parameters"]["MCF"]
    
    # Dump yml config file
    dummy_config_file = os.path.join(tmpdir, "dummy_config.yml")
    with open(dummy_config_file, "w") as outfile:
        ordered_dump(outfile, config)
    
    # Run as job
    setup = Setup.yaml_to_setup(dummy_config_file)
    setup.todo_init = ["platform"]
    setup = Setup.load_config(setup)
    platform = setup.platform

    job_file = os.path.join(tmpdir,
                            "job_pycif_{}".format(tmpdir[-5:]))

    exe = "{} -m pycif {}".format(platform.python, dummy_config_file)

    job_id = platform.submit_job(
        exe,
        job_file
    )
Antoine Berchet's avatar
Antoine Berchet committed
140
    
141
142
143
    # Wait for the end of the execution
    while not platform.check_jobs([job_id]):
        time.sleep(platform.sleep_time)
Antoine Berchet's avatar
Antoine Berchet committed
144
    
145
146
147
148
149
150
151
152
153
154
155
156
157
    # Get results and check that posterior closer to prior
    components = os.listdir(prior_dir)
    for comp in components:
        comp_dir_prior = os.path.join(prior_dir, comp)
        comp_dir_post = os.path.join(posterior_dir, comp)
        parameters = os.listdir(comp_dir_prior)
        for param in parameters:
            param_dir = os.path.join(comp_dir_prior, param)
            monitor_prior = \
                read_datastore(os.path.join(param_dir, "monitor.nc"))

            param_dir = os.path.join(comp_dir_post, param)
            monitor_post = \
Antoine Berchet's avatar
Antoine Berchet committed
158
                read_datastore(os.path.join(param_dir, "monitor.nc"))["maindata"]
159
160
161
162
163
164
165
166
167
168
169
170
171
            assert (
                    (monitor_prior.loc[:, "obs"]
                     - monitor_prior.loc[:, "sim"]).pow(2).sum()
                    - (monitor_post.loc[:, "obs"]
                       - monitor_post.loc[:, "sim"]).pow(2).sum()
                    > 0
            )

    # Dump configuration into CIF examples
    tag += "_{}_{}".format(settings["mode"],
                           "" if settings["mode"] != "4dvar"
                           else settings["minimizer"])

Antoine Berchet's avatar
Antoine Berchet committed
172
    current_dir = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
173
174
    root_dir = os.path.abspath(os.path.join(current_dir, "../../"))
    pytest_dir = os.path.abspath(tmpdir + "/../")
Antoine Berchet's avatar
Antoine Berchet committed
175
    example_dir = \
176
        os.path.abspath(os.path.join(root_dir, "examples_artifact/dummy/"))
Antoine Berchet's avatar
Antoine Berchet committed
177
    Path(example_dir).mkdir(parents=True, exist_ok=True)
178
179
    
    config["workdir"] = "{}/inversion_{}/".format(pytest_dir, tag)
180
181

    dummy_config_file = \
Antoine Berchet's avatar
Antoine Berchet committed
182
        os.path.join(example_dir, "config_inversion_{}.yml".format(tag))
183
    with open(dummy_config_file, "w") as outfile:
184
        ordered_dump(outfile, config,
185
186
                     ref_directories={"outdir": pytest_dir,
                                      "rootdir": root_dir},
187
                     replace_values={"rootdir": "/tmp/CIF/"})
188
    
Antoine Berchet's avatar
Antoine Berchet committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    # Loop with different number of simulations for non analytical inversions
    title = ""
    obs_root = "obsvect_posterior"
    control_root = "controlvect"
    if settings["mode"] != "analytical":
        for nsim in range(1, nsimmax + 1, 2):
            file_config = "{}/dummy_config.yml".format(tmpdir)
            inv_setup = Setup.from_yaml(file_config)
            
            if settings.get("minimizer", None) == "congrad":
                title = "CONGRAD"
                obs_root = "obsoperator/fwd_-002/obsvect"
                control_root = "obsoperator/fwd_-002/controlvect"
                inv_setup["mode"]["minimizer"]["maxiter"] = \
                    max(1, int(nsim))
Antoine Berchet's avatar
Antoine Berchet committed
204
                nsim *= 2
Antoine Berchet's avatar
Antoine Berchet committed
205
206
207
208
209
210
211
212
213
214
                if os.path.isdir("{}/obsoperator/fwd_-002".format(tmpdir)):
                    shutil.rmtree("{}/obsoperator/fwd_-002".format(tmpdir))
            elif settings.get("minimizer", None) == "M1QN3":
                title = "M1QN3"
                obs_root = "obsoperator/fwd_-002/obsvect"
                control_root = "obsoperator/fwd_-002/controlvect"
                inv_setup["mode"]["minimizer"]["maxiter"] = \
                    max(1, int(nsim))
                inv_setup["mode"]["minimizer"]["nsim"] = \
                    max(1, int(nsim))
Antoine Berchet's avatar
Antoine Berchet committed
215
                nsim *= 2
Antoine Berchet's avatar
Antoine Berchet committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
                if os.path.isdir("{}/obsoperator/fwd_-002".format(tmpdir)):
                    shutil.rmtree("{}/obsoperator/fwd_-002".format(tmpdir))
            elif settings["mode"] == "ensrf":
                title = "EnSRF"
                inv_setup["mode"]["nsample"] = nsim
            
            # Execute a partial inversion with less simulations
            inv_setup = Setup.from_dict(inv_setup, convert_none=True)
            inv_setup = inv_setup.load_config(inv_setup)
            controlvect, obsvect = inv_setup.mode.execute()
            
            # Compute the cost function
            departures = obsvect.ysim - obsvect.yobs
            j_o = 0.5 * (departures * obsvect.rinvprod(departures)).sum()
            
            dx = controlvect.x - controlvect.xb
            bfull = np.linalg.inv(controlvect.build_b(inv_setup.controlvect))
            j_b = dx[np.newaxis, :].dot(bfull.dot(dx[:, np.newaxis])).sum() / 2
            
            # Dump to text file for later plot
            with open("{}/varying_cost_function.txt".format(tmpdir), "a") as f:
                f.write("{} {} {}\n".format(nsim, j_o, j_b))
    
    else:
240
241
        title = "Analytical"
        
Antoine Berchet's avatar
Antoine Berchet committed
242
243
244
        # Load results
        file_config = "{}/dummy_config.yml".format(tmpdir)
        inv_setup = Setup.from_yaml(file_config)
245
246
        inv_setup = Setup.from_dict(inv_setup, convert_none=True)
        inv_setup = inv_setup.load_config(inv_setup)
247
248
249
250
251
252
253
254
255
256
257
        controlvect, obsvect = inv_setup.mode.execute()
        
        # Compute the cost function
        departures = obsvect.ysim - obsvect.yobs
        j_o = 0.5 * (departures * obsvect.rinvprod(departures)).sum()
        
        dx = controlvect.x - controlvect.xb
        bfull = np.linalg.inv(
            inv_setup.controlvect
                .build_b(inv_setup.controlvect)
        )
Antoine Berchet's avatar
Antoine Berchet committed
258
        j_b = dx[np.newaxis, :].dot(bfull.dot(dx[:, np.newaxis])).sum() / 2
259
260
261
        
        # Dump to text file for later plot
        with open("{}/varying_cost_function.txt".format(tmpdir), "a") as f:
Antoine Berchet's avatar
Antoine Berchet committed
262
263
            f.write("{} {} {}\n".format(0, j_o, j_b))
            f.write("{} {} {}\n".format(nsimmax, j_o, j_b))
264
    
Antoine Berchet's avatar
Antoine Berchet committed
265
266
267
268
269
270
271
    marker = pytestconfig.getoption('-m')
    if "article" in marker and "not article" not in marker:
        # Domain limits
        xmin = inv_setup.domain.xmin
        xmax = inv_setup.domain.xmax
        ymin = inv_setup.domain.ymin
        ymax = inv_setup.domain.ymax
272
    
Antoine Berchet's avatar
Antoine Berchet committed
273
274
275
276
277
278
279
280
281
282
        # Read observations
        file_obs = "{}/obsvect/concs/CH4/monitor.nc".format(tmpdir)
        monitor_ref = read_datastore(file_obs)
        coords = monitor_ref.loc[:, ["lon", "lat", "alt"]].drop_duplicates()
        
        # Compute fluxes from control vector
        file_flx = "{}/{}/fluxes/" \
                   "controlvect_fluxes_CH4.nc".format(tmpdir, control_root)
        ds = xr.open_dataset(file_flx)
        dflx = ds["x_phys"].mean(axis=(0, 1)) - ds["xb_phys"].mean(axis=(0, 1))
283
        dx = ds["x"].mean(axis=(0, 1)) - ds["xb"].mean(axis=(0, 1))
Antoine Berchet's avatar
Antoine Berchet committed
284
285
286
        
        # Fetch resolution for figure name
        resol = ""
287
        if config["datavect"]["components"][
Antoine Berchet's avatar
Antoine Berchet committed
288
289
                "fluxes"]["parameters"]["CH4"]["hresol"] == "hpixels":
            if config["datavect"]["components"][
Antoine Berchet's avatar
Antoine Berchet committed
290
291
                    "fluxes"]["parameters"]["CH4"][
                    "hcorrelations"]["sigma"] == 500:
Antoine Berchet's avatar
Antoine Berchet committed
292
293
294
                resol = "lowcorr"
            else:
                resol = "highcorr"
295
    
Antoine Berchet's avatar
Antoine Berchet committed
296
297
298
        elif config["datavect"]["components"]["fluxes"] \
                ["parameters"]["CH4"]["hresol"] == "ibands":
            resol = "bands"
299
    
Antoine Berchet's avatar
Antoine Berchet committed
300
301
302
303
        elif config["datavect"]["components"]["fluxes"] \
                ["parameters"]["CH4"]["hresol"] == "global":
            resol = "global"
        
304
        # Plot the figure of physical fluxes increments
Antoine Berchet's avatar
Antoine Berchet committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        plt.figure(figsize=(21, 11))
        
        ax0 = plt.axes([0.05, 0.05, 0.73, 0.87])
        im = plt.imshow(dflx, extent=(xmin, xmax, ymin, ymax), cmap="YlOrRd",
                        vmin=-0.2, vmax=0.5)
        sc = plt.scatter(coords["lon"], coords["lat"], c=coords["alt"],
                         cmap="Blues", linewidths=1, edgecolors="k", s=600)
        plt.yticks(fontsize=25)
        plt.xticks(fontsize=25)
        
        ax1 = plt.axes([0.74, 0.05, 0.05, 0.87])
        cb1 = plt.colorbar(im, cax=ax1)
        plt.yticks(fontsize=25)
        plt.ylabel("Fluxes (a.u.)", fontsize=30)
        
        ax2 = plt.axes([0.86, 0.05, 0.05, 0.87])
        cb2 = plt.colorbar(sc, cax=ax2)
        plt.yticks(fontsize=25)
        plt.ylabel("Station altitude (m a.g.l)", fontsize=30)
        
        ax0.set_title(title, fontsize=45)
Antoine Berchet's avatar
Antoine Berchet committed
326
327
328
329
330
331
332
        
        current_dir = os.path.abspath(
            os.path.dirname(os.path.realpath(__file__)))
        figure_dir = \
            os.path.abspath(os.path.join(current_dir,
                                         "../../figures_artifact/"))
        Path(figure_dir).mkdir(parents=True, exist_ok=True)
333
334
        plt.savefig("{}/map_dx_{}_{}_{}.pdf".format(
            figure_dir, title, resol, nsimmax))
Antoine Berchet's avatar
Antoine Berchet committed
335
        plt.close()
336
        
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        # Plot the figure of scalar fluxes increments
        plt.figure(figsize=(21, 11))
        
        ax0 = plt.axes([0.05, 0.05, 0.73, 0.87])
        im = plt.imshow(dx, extent=(xmin, xmax, ymin, ymax), cmap="YlOrRd")
        sc = plt.scatter(coords["lon"], coords["lat"], c=coords["alt"],
                         cmap="Blues", linewidths=1, edgecolors="k", s=600)
        plt.yticks(fontsize=25)
        plt.xticks(fontsize=25)
        
        ax1 = plt.axes([0.74, 0.05, 0.05, 0.87])
        cb1 = plt.colorbar(im, cax=ax1)
        plt.yticks(fontsize=25)
        plt.ylabel("Fluxes (a.u.)", fontsize=30)
        
        ax2 = plt.axes([0.86, 0.05, 0.05, 0.87])
        cb2 = plt.colorbar(sc, cax=ax2)
        plt.yticks(fontsize=25)
        plt.ylabel("Station altitude (m a.g.l)", fontsize=30)
        
        ax0.set_title(title, fontsize=45)
        
        current_dir = os.path.abspath(
            os.path.dirname(os.path.realpath(__file__)))
        figure_dir = \
            os.path.abspath(os.path.join(current_dir,
                                         "../../figures_artifact/"))
        Path(figure_dir).mkdir(parents=True, exist_ok=True)
        plt.savefig("{}/map_dx_scale_{}_{}_{}.pdf".format(
            figure_dir, title, resol, nsimmax))
        plt.close()
        
369
370
371
372
373
374
375
376
377
378
        # Plot uncertainty reduction
        if "pa_std" in ds:
            dstd = ds["b_std"].mean(axis=(0, 1)) \
                   - ds["pa_std"].mean(axis=(0, 1))
        
            # Plot the figure
            plt.figure(figsize=(21, 11))
            
            ax0 = plt.axes([0.05, 0.05, 0.73, 0.87])
            im = plt.imshow(dstd, extent=(xmin, xmax, ymin, ymax),
Antoine Berchet's avatar
Antoine Berchet committed
379
                            cmap="YlOrRd", vmin=0, vmax=1)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            sc = plt.scatter(coords["lon"], coords["lat"], c=coords["alt"],
                             cmap="Blues", linewidths=1, edgecolors="k", s=600)
            plt.yticks(fontsize=25)
            plt.xticks(fontsize=25)
            
            ax1 = plt.axes([0.74, 0.05, 0.05, 0.87])
            cb1 = plt.colorbar(im, cax=ax1)
            plt.yticks(fontsize=25)
            plt.ylabel("Uncertainty reduction (a.u.)", fontsize=30)
            
            ax2 = plt.axes([0.86, 0.05, 0.05, 0.87])
            cb2 = plt.colorbar(sc, cax=ax2)
            plt.yticks(fontsize=25)
            plt.ylabel("Station altitude (m a.g.l)", fontsize=30)
            
            ax0.set_title(title, fontsize=45)
            
            current_dir = os.path.abspath(
                os.path.dirname(os.path.realpath(__file__)))
            figure_dir = \
                os.path.abspath(os.path.join(current_dir,
                                             "../../figures_artifact/"))
            Path(figure_dir).mkdir(parents=True, exist_ok=True)
403
404
            plt.savefig("{}/map_dstd_{}_{}_{}.pdf"
                        .format(figure_dir, title, resol, nsimmax))
405
406
407
408
409
410
            plt.close()
        
        # Plot matrix of uncertainty reduction
        if hasattr(controlvect, "pa"):
            pa = controlvect.pa
            
Antoine Berchet's avatar
Antoine Berchet committed
411
412
413
414
            plt.figure(figsize=(21, 11))
            ax0 = plt.axes([0.05, 0.05, 0.73, 0.87])
            im = plt.imshow(pa[:int(controlvect.dim / 2),
                               :int(controlvect.dim / 2)],
415
                            vmin=-0.5, vmax=0.5, cmap="RdBu")
Antoine Berchet's avatar
Antoine Berchet committed
416
417
418
419
420
421
            plt.xticks(fontsize=20)
            plt.yticks(fontsize=20)
            
            ax1 = plt.axes([0.74, 0.05, 0.05, 0.87])
            cb1 = plt.colorbar(im, cax=ax1)
            plt.yticks(fontsize=25)
422
423
424
            plt.ylabel("Posterior uncertainties", fontsize=30)

            ax0.set_title(title, fontsize=45)
425
426
427
428
429
430
431
            
            current_dir = os.path.abspath(
                os.path.dirname(os.path.realpath(__file__)))
            figure_dir = \
                os.path.abspath(os.path.join(current_dir,
                                             "../../figures_artifact/"))
            Path(figure_dir).mkdir(parents=True, exist_ok=True)
432
            plt.savefig("{}/posterior_matrix_{}_{}_{}.pdf"
Antoine Berchet's avatar
Antoine Berchet committed
433
434
                        .format(figure_dir, title, resol, nsimmax),
                        bbox_inches='tight')
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
            plt.close()
            
            # Prior matrix
            bfull = controlvect.build_b(controlvect)
            plt.figure(figsize=(21, 11))
            ax0 = plt.axes([0.05, 0.05, 0.73, 0.87])
            im = plt.imshow(bfull[:int(controlvect.dim / 2),
                                  :int(controlvect.dim / 2)],
                            vmin=-0.5, vmax=0.5, cmap="RdBu")
            plt.xticks(fontsize=20)
            plt.yticks(fontsize=20)

            ax1 = plt.axes([0.74, 0.05, 0.05, 0.87])
            cb1 = plt.colorbar(im, cax=ax1)
            plt.yticks(fontsize=25)
450
            plt.ylabel("Prior uncertainties", fontsize=30)
451
452
453
454
455
456
457
458

            current_dir = os.path.abspath(
                os.path.dirname(os.path.realpath(__file__)))
            figure_dir = \
                os.path.abspath(os.path.join(current_dir,
                                             "../../figures_artifact/"))
            Path(figure_dir).mkdir(parents=True, exist_ok=True)
            plt.savefig("{}/prior_matrix_{}_{}_{}.pdf"
Antoine Berchet's avatar
Antoine Berchet committed
459
460
                        .format(figure_dir, title, resol, nsimmax),
                        bbox_inches='tight')
461
            plt.close()